Thermocline tanks have been considered as an alternative to traditional two-tank molten salt thermal storage in concentrating solar power systems due to their potential for cost reduction. One concern for thermocline usage is thermal ratcheting caused by the internal rock bed deformation during cyclic operation and significant temperature fluctuations. Thermal ratcheting studies have been performed in the literature to identify the possibility of tank rupture. However, these studies numerically modeled the ratcheting behavior utilizing bed properties that have never been measured for the materials used in thermocline storage systems. This work presents triaxial test data quartzite and silica thermocline filler materials to better inform future investigations of thermal ratcheting. Molten salt is replaced with water as the interstitial fluid due to similarity in dimensionless numbers and to accommodate room temperature measurement. Material property data for cohesion, dilatancy angle, internal angle of friction, Young's modulus, Poisson's ratio, and bulk modulus are presented for 0.138–0.414 MPa confining pressure. The material properties are then compared to those assumed in the literature to comment on the potential impact of this property data relative to thermal ratcheting.

References

1.
Libby
,
C.
,
2010
, “
Solar Thermocline Storage System–Preliminary Design Study
,” Electric Power Research Institute, Palo Alto, CA.
2.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
, and
Garimella
,
S. V.
, 2014, “Economic Optimization of a Concentrating Solar Power Plant With Molten—Salt Thermocline Storage,”
J. Solar Energy Eng.,
136, p. 011016.
3.
Faas
,
S. E.
,
Thorne
,
L. R.
,
Fuchs
,
E. A.
, and
Gilbertsen
,
N. D.
,
1986
, “
10 MWe Solar Thermal Central Receiver Pilot Plant: Thermal Storage Subsystem Evaluation–Final Report
,” Sandia National Laboratories Albuquerque, NM, Paper No. SAND86-8212.
4.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(2), pp.
153
159
.10.1115/1.1464123
5.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
, pp.
974
985
.10.1016/j.solener.2010.03.007
6.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
,
Garimella
,
S. V.
, and
Pacheco
,
J. E.
,
2014
, “
System-Level Simulation of a Solar Power Tower Plant With Thermocline Thermal Energy Storage
,”
Appl. Energy
,
113
, pp.
86
96
.10.1016/j.apenergy.2013.07.004
7.
Kolb
,
G. J.
,
Lee
,
G.
,
Mijatovic
,
P.
, and
Valmianski
,
E.
,
2011
, “
Thermal Ratcheting of Advanced Thermocline Energy Storage Tanks
,” SolarPACES, Granada, Spain, Sept. 20–23.
8.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
Appl. Energy
,
88
, pp.
2098
2105
.10.1016/j.apenergy.2010.12.031
9.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
Thermocline Energy Storage in the Solar One Power Plant: An Experimentally Validated Thermomechanical Investigation
,” Energy Sustainability, Washington, DC, Aug. 7–10.
10.
General Atomics
,
2011
, “
Thermal Ratcheting Analysis of Advanced Thermocline Energy Storage Tanks
,” SAND2011-6427P (GA-C27081), Sandia National Laboratories, Albuquerque, NM.
11.
Alejano
,
L. R.
, and
Bobet
,
A.
,
2012
, “
Drucker–Prager Criterion
,”
Rock Mech. Rock Eng.
,
45
, pp.
995
999
.10.1007/s00603-012-0278-2
12.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plasticity Analysis or Limit Design
,”
Q. Appl. Math.
,
10
, pp.
157
165
.
13.
Bardet
,
J.-P.
,
1997
,
Experimental Soil Mechanics
,
Prentice-Hall
,
Upper Sadle River, NJ
.
14.
Schellart
,
W. P.
,
2000
, “
Shear Test Results for Cohesion and Friction Coefficients for Different Granular Materials: Scaling Implications for Their Use in Analogue Modelling
,”
Tectonophysics
,
324
, pp.
1
16
.10.1016/S0040-1951(00)00111-6
15.
Alejano
,
L. R.
, and
Alonso
,
E.
,
2005
, “
Considerations of the Dilatancy Angle in Rocks and Rock Masses
,”
Int. J. Rock Mech. Min. Sci.
,
42
, pp.
481
507
.10.1016/j.ijrmms.2005.01.003
16.
AnhDan
,
L.
, and
Koseki
,
J.
,
2003
, “
Anisotropic Deformation Properties of Dense Granular Soils by Large-Scale True Triaxial Tests
,”
Deformation Characteristics of Geomaterials
,
H. D.
Benedetto
,
T.
Doanh
,
H.
Geoffroy
, and
C.
Sauzeat
, eds.,
A.A. Balkema Publishers
,
Tokyo
, pp.
298
313
.
17.
Zhu
,
T.
,
2013
, “
Some Useful Numbers on the Engineering Properties of Materials (Geologic and Otherwise
),” accessed Jan. 9, 2013. Available at: http://www.stanford.edu/∼tyzhu/Documents/SomeUsefulNumbers.pdf
18.
Vasil'eva
,
A. A.
,
Tkachenko
,
G. L.
, and
Lebedev
,
V. L.
,
1979
, “
Strength Properties of Gravel Soils With Clay Filler
,”
Soil Mech. Found. Eng.
,
16
, pp.
198
201
.10.1007/BF01704132
19.
Guo
,
P.
and
Su
,
X.
,
2007
, “
Shear Strength, Interparticle Locking, and Dilatancy of Granular Materials
,”
Can. Geotech. J.
,
44
, pp.
579
591
.10.1139/t07-010
20.
Bauer
,
S. J.
, and
Kuthakun
,
S. J.
,
2011
, “
Deformation of Solar Gravel
,” SAND2011-9277, Sandia National Laboratories, Albuquerque, NM.
21.
Brosseau
,
D. A.
,
Hlava
,
P. F.
, and
Kelly
,
M. J.
,
2004
, “
Testing Thermocline Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Solar Power Plants
,” Sandia National Laboratories Albuquerque, NM, Paper No. SAND2004-3207.
22.
Freeze
,
R. A.
, and
Cherry
,
J. A.
,
1979
,
Groundwater
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
.
23.
Bradshaw
,
R. W.
, and
Carling
,
R. W.
,
1987
, “
A Review of the Chemical and Physical Properties of Molten Alkali Nitrate Salts and Their Effects on Materials Used for Solar Central Receivers
,” Sandia National Laboratories, Albuquerque, NM, Paper No. SAND87-8005.
24.
Nissen
,
D. A.
,
1982
, “
Thermophysical Properties of the Equimolar Mixture NaNO3-KNO3 From 300 to 600 °C
,”
J. Chem. Eng. Data
,
27
, pp.
269
273
.10.1021/je00029a012
25.
The Engineering Toolbox
,
2013
. Available at: http://www.engineeringtoolbox.com
26.
Vermeer
,
P. A.
, and
de Borst
,
R.
,
1984
, “
Non-Associated Plasticity for Soils, Concrete, and Rock
,”
Heron
,
29
, pp.
1
64
.
You do not currently have access to this content.