The characteristics of solder joints between the busbars of solar cells and copper ribbons can affect the performance of a photovoltaic (PV) module significantly. The resistivity of the joints and the intermetallic compound structures within the joints are the two main characteristics that impose a substantial impact on the yield and the reliability of the PV module. In this paper, we aim to present and analyze a novel platinum-reinforced tin-silver-copper (Sn-3.8Ag-0.7Cu-0.2Pt) as the lead-free solder material to connect copper ribbons to the metallization of bifacial solar cells. The performance of the PV module using platinum-reinforced solder is investigated by constructing two bifacial PV modules using the popular lead-free Sn-3.8Ag-0.7Cu solder and Sn-3.8Ag-0.7Cu-0.2Pt solder, respectively. Micrographs of the joints are obtained to show that the platinum-reinforced solder joint has fewer voids and a more evenly distributed and thinner intermetallic layer than that of a conventional SnAgCu solder joint. As a result, the physical attachment between the busbars and the ribbon using SnAgCuPt solder is stronger than that using SnAgCu solder. The power outputs of both PV modules are measured together with two commercial PV modules under the sun using an IV plotter. The results show that the total energy yield of the bifacial PV module with the new solder is about 6–10% higher than that with the conventional SnAgCu solder. The energy yield of the bifacial PV module using SnAgCuPt solder is 35.8% and 0.2% higher than that of the commercially available monofacial polycrystalline and monocrystalline PV modules, respectively.

References

1.
Tong
,
S.
,
von Schirnding
,
Y. E.
, and
Prapamontol
,
T.
,
2000
, “
Environmental Lead Exposure: A Public Health Problem of Global Dimensions
,”
Bull. World Health Org.
,
78
(
9
), pp.
1068
1077
.
2.
What is RoHS? | Enforcement | BIS
,” accessed June 28, 2013, available http://www.bis.gov.uk/nmo/enforcement/rohs-home
3.
Export.gov—RoHS Information
,” accessed June 28, 2013, available http://export.gov/europeanunion/weeerohs/rohsinformation/
4.
About PV CYCLE
,” PV CYCLE accessed June 28, 2013, available http://www.pvcycle.org/about/
5.
McDonald
,
N. C.
, and
Pearce
,
J. M.
,
2010
, “
Producer Responsibility and Recycling Solar Photovoltaic Modules
,”
Energy Policy
,
38
(
11
), pp.
7041
7047
.10.1016/j.enpol.2010.07.023
6.
Saurat
,
M.
, and
Ritthoff
,
M.
, “
Photovoltaics and the RoHS Directive
,” Position Paper, Wuppertal Institute, available http://engineering.dartmouth.edu/
7.
Dziedzic
,
A.
, and
Graczyk
,
I.
,
2003
, “
Lead-Free Solders and Isotropically Conductive Adhesives in Assembling of Silicon Solar Cells—Preliminary Results
,”
26th International Spring Seminar on Electronics Technology: Integrated Management of Electronic Materials Production
, pp.
127
132
.
8.
Gierth
,
P.
,
Rebenklau
,
L.
, and
Michaelis
,
A.
,
2012
, “
Evaluation of Soldering Processes for High Efficiency Solar Cells
,”
2012 35th International Spring Seminar on Electronics Technology (ISSE)
, pp.
133
137
.
9.
Dušek
,
K.
,
Macháček
,
Z.
, and
Benda
,
V.
,
2009
, “
Electrical Parameters of the Solar Cells Soldered Joints in Comparison to Electrically Conductive Adhesive Joints
,” In 24th European Photovoltaic Solar Energy Conference and Exhibition. Munich: WIP - Renewable Energies, 2009, pp. 3577–3580.
10.
Sundelin
,
J. J.
,
Nurmi
,
S. T.
,
Lepistö
,
T. K.
, and
Ristolainen
,
E. O.
,
2006
, “
Mechanical and Microstructural Properties of SnAgCu Solder Joints
,”
Mater. Sci. Eng. A
,
420
(
1–2
), pp.
55
62
.10.1016/j.msea.2006.01.065
11.
Mysore
,
K.
,
Chan
,
D.
,
Bhate
,
D.
,
Subbarayan
,
G.
,
Dutta
, I
.
,
Gupta
, V
.
,
Zhao
,
J.
, and
Edwards
,
D.
,
2008
, “
Aging-Informed Behavior of Sn3.8Ag0.7Cu Solder Alloys
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, pp.
870
875
.
12.
Arulvanan
,
P.
,
Zhong
,
Z.
, and
Shi
,
X.
,
2006
, “
Effects of Process Conditions on Reliability, Microstructure Evolution and Failure Modes of SnAgCu Solder Joints
,”
Microelectron. Reliab.
,
46
(
2–4
), pp.
432
439
.10.1016/j.microrel.2005.05.005
13.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
, and
Nguyen
,
L.
,
2007
, “
Fatigue Crack Growth and Life Descriptions of Sn3.8Ag0.7Cu Solder Joints: A Computational and Experimental Study
,”
57th Proceedings of Electronic Components and Technology Conference
, pp.
558
565
.
14.
Nurmi
,
S.
,
Sundelin
,
J.
,
Ristolainen
,
E.
, and
Lepistö
,
T.
,
2004
, “
The Effect of Solder Paste Composition on the Reliability of SnAgCu Joints
,”
Microelectron. Reliab.
,
44
(
3
), pp.
485
494
.10.1016/j.microrel.2003.08.004
15.
Anderson
, I
. E.
,
Foley
,
J. C.
,
Cook
,
B. A.
,
Harringa
,
J.
,
Terpstra
,
R. L.
, and
Unal
,
O.
,
2001
, “
Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability
,”
J. Electron. Mater.
,
30
(
9
), pp.
1050
1059
.10.1007/s11664-001-0129-5
16.
Gao
,
L.
,
Xue
,
S.
,
Zhang
,
L.
,
Sheng
,
Z.
,
Ji
,
F.
,
Dai
,
W.
,
Yu
,
S.
, and
Zeng
,
G.
,
2010
, “
Effect of Alloying Elements on Properties and Microstructures of SnAgCu Solders
,”
Microelectron. Eng.
,
87
(
11
), pp.
2025
2034
.10.1016/j.mee.2010.04.007
17.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
,
2003
, “
Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn–Ag–Cu Alloy and Joints With Cu
,”
Microelectron. Reliab.
,
43
(
2
), pp.
259
267
.10.1016/S0026-2714(02)00239-1
18.
Shnawah
,
D. A. A.
,
Sabri
,
M. F. B. M.
,
Badruddin
,
I. A.
, and
Said
,
S.
,
2012
, “
A Review on Effect of Minor Alloying Elements on Thermal Cycling and Drop Impact Reliability of Low-Ag Sn-Ag-Cu Solder Joints
,”
Microelectron. Int.
,
29
(
1
), pp.
47
57
.10.1108/13565361211219202
19.
Yu
,
D. Q.
,
Zhao
,
J.
, and
Wang
,
L.
,
2004
, “
Improvement on the Microstructure Stability, Mechanical and Wetting Properties of Sn–Ag–Cu Lead-Free Solder With the Addition of Rare Earth Elements
,”
J. Alloys Compd.
,
376
(
1–2
), pp.
170
175
.10.1016/j.jallcom.2004.01.012
20.
Zhang
,
L.
,
Xue
,
S.
,
Gao
,
L.
,
Zeng
,
G.
,
Chen
,
Y.
,
Yu
,
S.
, and
Sheng
,
Z.
,
2010
, “
Creep Behavior of SnAgCu Solders With Rare Earth Ce Doping
,”
Trans. Nonferrous Met. Soc. China
,
20
(
3
), pp.
412
417
.10.1016/S1003-6326(09)60155-2
21.
Zhang
,
L.
,
Xue
,
S. B.
,
Zeng
,
G.
,
Gao
,
L. L.
, and
Ye
,
H.
,
2012
, “
Interface Reaction Between SnAgCu/SnAgCuCe Solders and Cu Substrate Subjected to Thermal Cycling and Isothermal Aging
,”
J. Alloys Compd.
,
510
(
1
), pp.
38
45
.10.1016/j.jallcom.2011.08.044
22.
Law
,
C. M. T.
,
Wu
,
C. M. L.
,
Yu
,
D. Q.
,
Wang
,
L.
, and
Lai
,
J. K. L.
,
2006
, “
Microstructure, Solderability, and Growth of Intermetallic Compounds of Sn-Ag-Cu-RE Lead-Free Solder Alloys
,”
J. Electron. Mater.
,
35
(
1
), pp.
89
93
.10.1007/s11664-006-0189-7
23.
Chen
,
Z. G.
,
Shi
,
Y. W.
,
Xia
,
Z. D.
, and
Yan
,
Y. F.
,
2002
, “
Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu-RE and Its Soldered Joints
,”
J. Electron. Mater.
,
31
(
10
), pp.
1122
1128
.10.1007/s11664-002-0052-4
24.
Biocca
,
P.
, “
ACI—Lead-Free SMT Soldering Defects: How to Prevent Them
,” accessed June 28, 2013, available http://www.aciusa.org/leadfree/leadfree_biocca11-5-04.htm
25.
Bader
,
W. G.
,
1969
, “
Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a Molten Tin-Lead Solder
,”
Weld J.
,
48
(
12
), pp. 310–314.
26.
Meagher
,
B.
,
Schwarcz
,
D.
, and
Ohring
,
M.
,
1996
, “
Compound Growth in Platinum/Tin-Lead Solder Diffusion Couples
,”
J. Mater. Sci.
,
31
(
20
), pp.
5479
5486
.10.1007/BF01159320
27.
Kuhmann
,
J.
,
Chiang
,
C.-H.
,
Harde
,
P.
,
Reier
,
F.
,
Oesterle
,
W.
,
Urban
,
I.
, and
Klein
,
A.
,
1998
, “
Pt Thin-Film Metallization for FC-Bonding Using SnPb60/40 Solder Bump Metallurgy
,”
Mater. Sci. Eng. A
,
242
(
1–2
), pp.
22
25
.10.1016/S0921-5093(97)00536-4
28.
Karen Wong
,
M. C.
, and
Tian
,
Y. K.
,
2013
, “
Effect of Pt Additions on the Intermetallic Layer (IMC) Thickness and Bulk Hardness of Sn-3.8Ag-0.7Cu Composite Solder
,”
Proceedings of the 7th Asia Pacific IIW International Congress 2013 on Recent Development in Welding and Joining Technologies
,
Singapore
.
29.
Karen Wong
,
M. C.
,
Lim
,
Y. S.
,
Tian
,
Y. K.
, and
Liang
,
M. S.
, “Platinum Solder Alloy,” Patents Registration Office, Kuala Lumpur, Malaysia, Patent Number PI 2012700980.
30.
Lim
,
Y. S.
,
Lo
,
C. K.
,
Kee
,
S. Y.
,
Ewe
,
H. T.
, and
Faidz
,
A. R.
,
2014
, “
Design and Evaluation of Passive Concentrator and Reflector Systems for Bifacial Solar Panel on a Highly Cloudy Region—A Case Study in Malaysia
,”
Renewable Energy
,
63
, pp.
415
425
.10.1016/j.renene.2013.10.008
31.
Winston
,
R.
,
Minano
,
J. C.
, and
Benitez
,
P. G.
,
2005
,
Nonimaging Optics
,
Academic Press
,
New York
.
32.
Vorobiev
,
P. Y.
,
González-Hernández
,
J.
, and
Vorobiev
,
Y. V.
,
2004
, “
Optimization of the Solar Energy Collection in Tracking and Non-Tracking Photovoltaic Solar System
,” Cinvestav-Anuario, pp.
310
314
.
33.
Strebkov
,
D.
,
Tyukhov
,
I.
,
Vignola
,
F.
,
Clouston
,
S.
, and
Rogers
,
R.
,
2004
, “
New Solar Combined Concentrator Technology in Oregon
,”
A Solar Harvest: Growing Opportunities
,
R.
Campbell-Howe
, ed.,
Portland
,
OR
, pp.
223
227
.
34.
Kivalov
,
S. N.
, and
Perez
,
R.
,
2010
, “
Non-Imagine Solar Stationary Concentrators With Using Combination of Prisms and Reflective Surfaces
,”
J. Opt. Soc. Am
.,
60
, pp. 245–247.
35.
Uematsu
,
T.
,
Tsutsui
,
K.
,
Yazawa
,
Y.
,
Warabisako
,
T.
,
Araki
,
I.
,
Eguchi
,
Y.
, and
Joge
,
T.
,
2003
, “
Development of Bifacial PV Cells for New Applications of Flat-Plate Modules
,”
Sol. Energy Mater. Sol. Cells
,
75
(
3–4
), pp.
557
566
.10.1016/S0927-0248(02)00197-6
36.
Frank
,
J.
,
Rüdiger
,
M.
,
Fischer
,
S.
,
Goldschmidt
,
J.
, and
Hermle
,
M.
,
2012
, “
Optical Simulation of Bifacial Solar Cells
,”
Energy Proc.
,
27
, pp.
300
305
.10.1016/j.egypro.2012.07.067
37.
Robles-Ocampo
,
B.
,
Ruiz-Vasquez
,
E.
,
Canseco-Sanchez
,
H.
,
Cornejo-Meza
,
R.
,
Trápaga-Martínez
,
G.
,
García-Rodriguez
,
F.
,
González-Hernández
,
J.
, and
Vorobiev
,
Y. V.
,
2007
, “
Photovoltaic/Thermal Solar Hybrid System With Bifacial PV Module and Transparent Plane Collector
,”
Sol. Energy Mater. Sol. Cells
,
91
(
20
), pp.
1966
1971
.10.1016/j.solmat.2007.08.005
38.
Araki
,
I.
,
Tatsunokuchi
,
M.
,
Nakahara
,
H.
, and
Tomita
,
T.
,
2009
, “
Bifacial PV System in Aichi Airport-Site Demonstrative Research Plant for New Energy Power Generation
,”
Sol. Energy Mater. Sol. Cells
,
93
(
6–7
), pp.
911
916
.10.1016/j.solmat.2008.10.030
39.
Alonso
,
J.
,
Diaz
,
V.
,
Hernandez
,
M.
,
Bercero
,
F.
,
Canizo
,
C.
,
Pou
,
I.
,
Mohedano
,
R.
,
Benitez
,
P.
,
Minano
,
J.
, and
Luque
,
A.
,
2002
,
A New Static Concentrator PV Module With Bifacial Cells for Integration on Facades: The PV VENETIAN Store
,”
IEEE
, pp.
1584
1587
.
40.
Bifacial Solar Cell Manufacturing | PVG Solutions
” accessed Apr. 8, 2013, available http://www.pvgs.jp/en/earthon.html
41.
Shockley
,
W.
,
1964
, “
Research and Investigation of Inverse Epitaxial UHF Power Transistors
,” Report No Al-TOR-64-207 Air Force At. Lab. Wright-Patterson Air Force Base Ohio.
42.
Schroder
,
D. K.
,
2006
,
Semiconductor Material and Device Characterization
, 3rd ed.,
John Wiley & Sons
, New York.
43.
Lo
,
C. K.
,
Wong
,
K. M. C.
,
Lim
,
Y. S.
, and
Tian
,
Y. K.
,
2013
, “
Performance of a Novel Sn-Ag-Cu-Pt Solder as Interconnections in Bi-Facial Solar Cells Under the Sun
,”
Int. J. Inst. Mater. Malaysia
,
1
(
1
), pp.
91
105
.
44.
Wang
,
S. J.
, and
Liu
,
C. Y.
,
2007
, “
Coupling Effect in Pt/Sn/Cu Sandwich Solder Joint Structures
,”
Acta Mater.
,
55
(
10
), pp.
3327
3335
.10.1016/j.actamat.2007.01.031
45.
Sabry
,
M.
, and
Ghitas
,
A. E.
,
2007
, “
Influence of Temperature on Methods for Determining Silicon Solar Cell Series Resistance
,”
ASME J. Sol. Energy Eng.
,
129
(
3
), pp.
331
335
.10.1115/1.2735350
46.
Lim
,
Y. S.
,
Lalchand
,
G.
, and
Sow Lin
,
G. M.
,
2008
, “
Economical, Environmental and Technical Analysis of Building Integrated Photovoltaic Systems in Malaysia
,”
Energy Policy
,
36
(
6
), pp.
2130
2142
.10.1016/j.enpol.2008.02.016
47.
Solar Power Mart
,” Sol. Power Mart, accessed Mar.7, 2013, available http://solarpower-mart.com/solar_panel
You do not currently have access to this content.