The vanadium redox flow battery (VRFB) is an attractive grid scale energy storage option, but high operating cost prevents widespread commercialization. One way of mitigating cost is to optimize system performance, which requires an accurate model capable of predicting cell voltage under different operating conditions such as current, temperature, flow rate, and state of charge. This paper presents a lumped isothermal VRFB model based on principles of mass transfer and electrochemical kinetics that can predict transient performance with respect to the aforementioned operating conditions. The model captures two important physical phenomena: (1) mass transfer at the electrode surface and (2) vanadium crossover through the membrane. Mass transfer effects increase the overpotential and thus reduce the battery output voltage during discharge. Vanadium crossover causes a concentration imbalance between the two half-cells that negatively affects the voltage response particularly after long term cycling. Further analysis on the system linearity is conducted to assess the feasibility of using a linear control design methodology.

References

1.
Barton
,
J. P.
, and
Infield
,
D. G.
,
2004
, “
Energy Storage and Its Use With Intermittent Renewable Energy
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
441
448
.10.1109/TEC.2003.822305
2.
Hadjipaschalis
,
I.
,
Poullikkas
,
A.
, and
Efthimiou
,
V.
,
2009
, “
Overview of Current and Future Energy Storage Technologies for Electric Power Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1513
1522
.10.1016/j.rser.2008.09.028
3.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.10.1016/j.jpowsour.2009.11.048
4.
Skyllas-Kazacos
,
M.
,
Chakrabarti
,
M. H.
,
Hajimolana
,
S. A.
,
Mjalli
,
F. S.
, and
Saleem
,
M.
,
2011
, “
Progress in Flow Battery Research and Development
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
R55
R79
.10.1149/1.3599565
5.
Weber
,
A.
,
Mench
,
M.
,
Meyers
,
J.
,
Ross
,
P.
,
Gostick
,
J.
, and
Liu
,
Q.
,
2011
, “
Redox Flow Batteries: A Review
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1137
1164
.10.1007/s10800-011-0348-2
6.
Al-Fetlawi
,
H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2009
, “
Non-Isothermal Modelling of the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
1
), pp.
78
89
.10.1016/j.electacta.2009.08.009
7.
Al-Fetlawi
,
H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2010
, “
Modelling the Effects of Oxygen Evolution in the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
9
), pp.
3192
3205
.10.1016/j.electacta.2009.12.085
8.
Shah
,
A. A.
,
Al-Fetlawi
,
H.
, and
Walsh
,
F. C.
,
2010
, “
Dynamic Modelling of Hydrogen Evolution Effects in the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
3
), pp.
1125
1139
.10.1016/j.electacta.2009.10.022
9.
Shah
,
A. A.
,
Watt-Smith
,
M. J.
, and
Walsh
,
F. C.
,
2008
, “
A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species
,”
Electrochim. Acta
,
53
(
27
), pp.
8087
8100
.10.1016/j.electacta.2008.05.067
10.
Vynnycky
,
M.
,
2011
, “
Analysis of a Model for the Operation of a Vanadium Redox Battery
,”
Energy
,
36
(
4
), pp.
2242
2256
.10.1016/j.energy.2010.03.060
11.
Li
,
M. L.
, and
Hikihara
,
T.
,
2008
, “
A Coupled Dynamical Model of a Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit
,”
IEICE Trans. Fundamentals
,
E91-A
(
7
), p.
1741
–1747.10.1093/ietfec/e91-a.7.1741
12.
Shah
,
A. A.
,
Tangirala
,
R.
,
Singh
,
R.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2011
, “
A Dynamic Unit Cell Model for the All-Vanadium Flow Battery
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A671
A677
.10.1149/1.3561426
13.
Tang
,
A.
,
Bao
,
J.
, and
Skyllas-Kazacos
,
M.
,
2011
, “
Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery
,”
J. Power Sources
,
196
(
24
), pp.
10737
10747
.10.1016/j.jpowsour.2011.09.003
14.
Sun
,
C.
,
Chen
,
J.
,
Zhang
,
H.
,
Han
,
X.
, and
Luo
,
Q.
,
2010
, “
Investigations on Transfer of Water and Vanadium Ions Across Nafion Membrane in an Operating Vanadium Redox Flow Battery
,”
J. Power Sources
,
195
(
3
), pp.
890
897
.10.1016/j.jpowsour.2009.08.041
15.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
16.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamentals and Applications
,
Wiley
,
New York
.
17.
Schmal
,
D.
,
Van Erkel
,
J.
, and
Van Duin
,
P. J.
,
1986
, “
Mass Transfer at Carbon Fibre Electrodes
,”
J. Appl. Electrochem.
,
16
(
3
), pp.
422
430
.10.1007/BF01008853
18.
You
,
D.
,
Zhang
,
H.
, and
Chen
,
J.
,
2009
, “
A Simple Model for the Vanadium Redox Battery
,”
Electrochim. Acta
,
54
(
27
), pp.
6827
6836
.10.1016/j.electacta.2009.06.086
19.
Skyllas-Kazacos
,
M.
, and
Kazacos
,
M.
,
2011
, “
State of Charge Monitoring Methods for Vanadium Redox Flow Battery Control
,”
J. Power Sources
,
196
(
20
), pp.
8822
8827
.10.1016/j.jpowsour.2011.06.080
20.
El-Sakkary
,
A.
,
1985
, “
The Gap Metric: Robustness of Stabilization of Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
3
), pp.
240
247
.10.1109/TAC.1985.1103926
21.
Tan
,
W.
,
Marquez
,
H. J.
,
Chen
,
T.
, and
Liu
,
J.
,
2005
, “
Analysis and Control of a Nonlinear Boiler-Turbine Unit
,”
J. Process Control
,
15
(
8
), pp.
883
891
.10.1016/j.jprocont.2005.03.007
You do not currently have access to this content.