This work has been realized in the framework of the Elioslab project, financed by the Italian Ministry of Education, University and Research (MIUR), which aims to create a research platform in order to develop components and systems for the production and utilization of medium and high temperature heat using concentrated solar energy. As regards high temperature heat production, a 30 kW solar furnace that consists of a heliostat with flat mirrors and a parabolic concentrator with off-axis alignment is being realized in order to achieve a solar radiation concentration peak of about 2000 suns. The energy flux relative to the concentrated radiation will be converted to high temperature heat by a cavity receiver cooled with CO2, and finally transferred to a device operating at high temperature consisting in a thermochemical reactor for hydrogen production. Due to the intermittency of solar radiation, a high temperature (>800 °C) packed bed sensible heat storage system, with alumina balls as heat storage material, has been developed in order to provide continuity to the user operation. This paper focuses on the parametric analysis that has been carried out by means of numerical simulations to evaluate the set of variable parameters that maximize the efficiency of the heat storage system of the solar furnace. The charging and discharging phases of the heat storage tank have been numerically simulated by means of an analytical model that takes into account the conductive, convective, and radiative heat transfer as well as turbulent diffusion due to the solid–fluid interaction. The results of the numerical parametric analysis are presented together with the experimental validation of the adopted analytical model accomplished by using a reduced-scale high temperature storage system.

References

1.
Contento
,
G.
,
Cancro
,
C.
, and
Privato
,
C.
,
2010
, “
Layout and Optical Configuration of the ELIOSLAB Project Solar Furnace
,”
ASME-ATI-UIT Conference 2010
,
Sorrento, Italy
,
May 16–19
.
2.
Alvania
,
C.
,
La Barbera
,
A.
,
Ennas
,
G.
,
Padella
,
F.
, and
Varsano
,
F.
,
2006
, “
Hydrogen Production by Using Manganese Ferrite: Evidences and Benefits of a Multi-Step Reaction Mechanism
,”
Int. J. Hydrogen Energy
,
31
, pp.
2217
2222
.10.1016/j.ijhydene.2006.02.025
3.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1059
1069
.10.1016/j.rser.2009.10.022
4.
Coutier
,
J. P.
, and
Faber
,
E. A.
,
1982
, “
Two Applications of a Numerical Approach of Heat Transfer Process Within Rock Beds
,”
Sol. Energy
,
29
, pp.
451
462
.10.1016/0038-092X(82)90053-6
5.
Meier
,
A.
,
Winkler
,
C.
, and
Wuillemin
,
D.
,
1991
, “
Experiment for Modeling High Temperature Rock Bed Storage
,”
Sol. Energy Mater.
,
24
, pp.
255
264
.10.1016/0165-1633(91)90066-T
6.
Jalalzadeh-Azar
,
A. A.
,
Steele
,
W. G.
, and
Adebiyi
,
G. A.
,
1996
, “
Heat Transfer in High-Temperature Packed Bed Thermal Energy Storage System—Roles of Radiation and Intraparticle Conduction
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
102
111
.10.1115/1.2792693
7.
Adebiyi
,
A.
,
Nsofor
,
E. C.
,
Steele
,
W. G.
, and
Jalalzadeh-Aza
,
A.
,
1998
, “
Parametric Study on the Operating Efficiencies of a Packed Bed for High-Temperature Sensible Heat Storage
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
2
13
.10.1115/1.2888043
8.
Fricker
,
H. W.
,
2004
, “
Regenerative Thermal Storage in Atmospheric Air System Solar Power Plants
,”
Energy
,
29
, pp.
871
881
.10.1016/S0360-5442(03)00192-0
9.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
, pp.
1798
1806
.10.1016/j.applthermaleng.2010.10.034
10.
Yang
,
W. C.
, ed.,
2003
,
Handbook of Fluidization and Fluid-Particle Systems
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
11.
Beasley
,
D. E.
, and
Clark
,
J. A.
,
1983
, “
Transient Response of a Packed Bed for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
27
, pp.
1659
1669
.10.1016/0017-9310(84)90278-3
12.
Handley
,
D.
, and
Heggs
,
P. J.
,
1969
, “
The Effect of Thermal Conductivity of the Packing Material on Transient Heat Transfer in a Fixed Bed
,”
Int. J. Heat Mass Transfer
,
12
, pp.
549
570
.10.1016/0017-9310(69)90038-6
13.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
, pp.
939
954
.10.1016/0017-9310(94)90219-4
14.
Amiri
,
A.
, and
Vafai
,
K.
,
1998
, “
Transient Analysis of Incompressible Flow Through a Packed Bed
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4259
4279
.10.1016/S0017-9310(98)00120-3
15.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
,
34
, pp.
325
336
.10.1016/0009-2509(79)85064-2
16.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
, 3rd ed.,
Hemisphere
,
New York
.
17.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers, Inc.
,
New York
.
18.
Beek
,
J.
,
1962
, “
Design of Packed Catalytic Reactors
,”
Adv. Chem. Eng.
,
3
, pp.
203
271
.10.1016/S0065-2377(08)60060-5
19.
Baehr
,
H. D.
, and
Stephan
,
K.
,
2006
,
Heat and Mass Transfer
, 2nd ed.,
Springer
,
Berlin
.
20.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
You do not currently have access to this content.