The main advantage of organic or polymer solar cells is their compatibility with conventional printing and coating techniques, making them highly cost-effective and suitable for large scale manufacturing. This work describes a simple, scalable, low-cost platform designed to test polymer solar cell devices. Custom built instrumentation and software were developed to analyze the current–voltage characteristics and quantum efficiency (QE) of the solar cells. The test set-up is modular and can be adapted to test solar cells under varying atmospheres (inert and ambient). The solar energy source comprises of an Oriel 91160 300 W class C solar simulator with air mass (AM) 1.5 G filter for spectral shaping and solar intensity variation between 1 and 3 suns. Custom software developed using labview allows for testing to be carried out at high speeds reproducibly with minimal operator intervention. Software-controlled timer functionality allows programmable testing of solar cells over durations ranging from seconds to days, allowing for the evaluation of solar cell operational lifetimes. The facile design of the test set-up presented here provides an opportunity for different laboratories to set-up similar systems and tweak them for performing a host of photovoltaic measurements.

References

1.
Heeger
,
A. J.
,
2001
, “
Nobel Lecture: Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials
,”
Rev. Mod. Phys.
,
73
(
3
), pp.
681
700
.10.1103/RevModPhys.73.681
2.
Friend
,
R. H.
,
Gymer
,
R. W.
,
Holmes
,
A. B.
,
Burroughes
,
J. H.
,
Marks
,
R. N.
,
Taliani
,
C.
,
Bradley
,
D. D. C.
,
Dos Santos
,
D. A.
,
Bredas
,
J. L.
,
Logdlund
,
M.
, and
Salaneck
,
W. R.
,
1999
, “
Electroluminescence in Conjugated Polymers
,”
Nature
,
39
(
14
), pp.
121
128
.10.1038/16393
3.
He
,
F.
, and
Yu
,
L.
,
2011
, “
How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach
,”
J. Phys. Chem. Lett.
,
2
(
24
), pp.
3102
3113
.10.1021/jz201479b
4.
He
,
Z.
,
Zhong
,
C.
,
Huang
,
X.
,
Wong
,
W.-Y.
,
Wu
,
H.
,
Chen
,
L.
,
Su
,
S.
, and
Cao
,
Y.
,
2011
, “
Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells
,”
Adv. Mater.
,
23
(
40
), pp.
4636
4643
.10.1002/adma.201103006
5.
Jørgensen
,
M.
,
Norrman
,
K.
,
Gevorgyan
,
S. A.
,
Tromholt
,
T.
,
Andreasen
,
B.
, and
Krebs
,
F. C.
,
2012
, “
Stability of Polymer Solar Cells
,”
Adv. Mater.
,
24
(
5
), pp.
580
612
.10.1002/adma.201104187
6.
Larsen-Olsen
,
T. T.
,
Machui
,
F.
,
Lechene
,
B.
,
Berny
,
S.
,
Angmo
,
D.
,
Søndergaard
,
R.
,
Blouin
,
N.
,
Mitchell
,
W.
,
Tierney
,
S.
,
Cull
,
T.
,
Tiwana
,
P.
,
Meyer
,
F.
,
Carrasco-Orozco
,
M.
,
Scheel
A.
,
Lövenich
,
W.
,
de Bettignies
,
R.
,
Brabec
,
C. J.
, and
Krebs
,
F. C.
,
2012
, “
Round-Robin Studies as a Method for Testing and Validating High-Efficiency ITO-Free Polymer Solar Cells Based on Roll-to-Roll-Coated Highly Conductive and Transparent Flexible Substrates
,”
Adv. Energy Mater.
,
2
(
9
), pp.
1091
1094
.10.1002/aenm.201200079
7.
Krebs
,
F. C.
,
Gevorgyan
,
S. A.
,
Gholamkhass
,
B.
,
Holdcroft
,
B.
,
Schlenker
,
C.
,
Thompson
,
M. E.
,
Thompson
,
B. C.
,
Olson
,
D.
,
Ginley
,
D. S.
,
Shaheen
,
S. E.
,
Alshareef
,
H. N.
,
Murphy
,
J. W.
,
Youngblood
,
W. J.
,
Heston
,
N. C.
,
Reynolds
,
J. R.
,
Jia
,
S.
,
Laird
,
D.
,
Tuladhar
,
S. M.
,
Dane
,
J. G. A.
,
Atienzar
,
P.
,
Nelson
,
J.
,
Kroon
,
J. M.
,
Wienk
,
M. M.
,
Janssen
,
R. A. J.
,
Tvingstedt
,
K.
,
Zhang
,
F.
,
Andersson
,
M.
,
Inganas
,
O.
,
Lira-Cantu
,
M.
,
de Bettignies
,
R.
,
Guillerez
,
S.
,
Aernouts
,
T.
,
Cheyns
,
D.
,
Lutsen
,
L.
,
Zimmermann
,
B.
,
Wurfel
,
U.
,
Niggemann
,
M.
,
Schleiermacher
,
H.-F.
,
Liska
,
P.
,
Gratzel
,
M.
,
Lianos
,
P.
,
Katz
,
E. A.
,
Lohwasser
,
W.
, and
Jannon
,
B.
,
2009
, “
A Round Robin Study of Flexible Large-Area Roll-to-Roll Processed Polymer Solar Cell Modules
,”
Sol. Energy Mater. Sol. Cells
,
93
(
11
), pp.
1968
1977
.10.1016/j.solmat.2009.07.015
8.
Gevorgyan
,
S. A.
,
Medford
,
A. J.
,
Bundgaard
,
E.
,
Sapkota
,
S. B.
,
Schleiermacher
,
H.
,
Zimmermann
,
B.
,
Wurfel
,
U.
,
Chafiq
,
A.
,
Lira-Cantu
,
M.
,
Swonke
,
T.
,
Wagner
,
M.
,
Brabec
,
C. J.
,
Haillant
,
O.
,
Voroshazi
,
E.
,
Aernouts
,
T.
,
Steim
,
R.
,
Hauch
,
J. A.
,
Elschner
,
A.
,
Pannone
,
M.
,
Xiao
,
M.
,
Langzettel
,
A.
,
Laird
,
D.
,
Lloyd
,
M. T.
,
Rath
,
T.
,
Maier
,
E.
,
Trimmel
,
G.
,
Hermenau
,
M.
,
Menke
,
T.
,
Leo
,
K.
,
Rosch
,
R.
,
Seeland
,
M.
,
Hoppe
,
H.
,
Nagle
,
T. J.
,
Burke
,
K. B.
,
Fell
,
C. J.
,
Vak
,
D.
,
Singh
,
Th. B.
,
Watkins
,
S. E.
,
Galagan
,
Y.
,
Manor
,
A.
,
Katz
,
E. A.
,
Kim
,
T.
,
Kim
,
K.
,
Sommeling
,
P. M.
,
Verhees
,
W. J. H.
,
Veenstra
,
S. C.
,
Riede
,
M.
,
Christoforo
,
G. M.
,
Currier
,
T.
,
Shrotriya
,
V.
,
Schwartz
,
G.
, and
Krebs
,
F. C.
,
2011
, “
An Inter-Laboratory Stability Study of Roll-to-Roll Coated Flexible Polymer Solar Modules
,”
Sol. Energy Mater. Sol. Cells
,
95
(
5
), pp.
1398
1416
.10.1016/j.solmat.2011.01.010
9.
Reese
,
M. O.
,
Gevorgyan
,
S. A.
,
Jørgensen
,
M.
,
Bundgaard
,
E.
,
Kurtz
,
S. R.
,
Ginley
,
D. S.
,
Olson
,
D. C.
,
Lloyd
,
M. T.
,
Morvillo
,
P.
,
Katz
,
E. A.
,
Elschner
,
A.
,
Haillant
,
O.
,
Currier
,
T. R.
,
Shrotriya
,
V.
,
Hermenau
,
M.
,
Riede
,
M.
,
Kirov
,
K. R.
,
Trimmel
,
G.
,
Rath
,
T.
,
Inganäs
,
O.
,
Zhang
,
F.
,
Andersson
,
M.
,
Tvingstedt
,
K.
,
Lira-Cantu
,
M.
,
Laird
,
D.
,
McGuiness
,
C.
,
Gowrisanker
,
S.
,
Pannone
,
M.
,
Xiao
,
M.
,
Hauch
,
J.
,
Steim
,
R.
,
DeLongchamp
,
D. M.
,
Rösch
,
R.
,
Hoppe
,
H.
,
Espinosa
,
N.
,
Urbina
,
A.
,
Yaman-Uzunoglu
,
G.
,
Bonekamp
,
J.-B.
,
Van Breemen
,
A. J. J. M.
,
Girotto
,
C.
,
Voroshazi
,
E.
, and
Krebs
,
F. C.
,
2011
, “
Consensus Stability Testing Protocols for Organic Photovoltaic Materials and Devices
,”
Sol. Energy Mater. Sol. Cells
,
95
(
5
), pp.
1253
1267
.10.1016/j.solmat.2011.01.036
10.
Newport (Oriel Product Training) Manual—Solar Simulation, available at http://assets.newport.com/webDocuments-EN/images/12298.pdf
11.
Krebs
,
F. C.
,
Sylvester-Hvid
,
K. O.
, and
Jørgensen
M.
,
2011
, “
A Self-Calibrating LED-Based Solar Test Platform
,”
Prog. Photovoltaics
,
19
, pp.
97
112
.10.1002/pip.963
12.
Carabe
,
J.
,
1991
, “
A New Approach to Measuring Spectral Responses of Nonlinear Solar Cells
,”
Sol. Cells
,
31
(
1
) pp.
39
46
.10.1016/0379-6787(91)90005-A
13.
Bucher
,
K.
, and
Schonecker
,
A.
,
1991
, “
Spectral Response Measurements of Multi-Junction Solar Cells With a Grating Monochromator and a Fourier Spectrometer
,”
Proceedings of the 10th European Photovoltaic Solar Energy Conference
,
Lisbon
, Portugul, April 8–12, pp.
107
110
.
14.
Nelson
,
J.
,
2003
,
Physics of Solar Cells
,
Imperial College Press
, London.
15.
Adla
,
A.
,
2010
, “
Instrumentation for Quantum Efficiency Measurement of Solar Cells
,”
Photovoltaics World
,
July/August, pp. 28–31
.
16.
McGehee
,
M. D.
,
2009
, “
Nanostructured Organic–Inorganic Hybrid Solar Cells
,”
MRS Bull.
,
34
(
2
), pp.
95
100
.10.1557/mrs2009.27
17.
Reeja-Jayan
,
B.
, and
Manthiram
,
A.
,
2011
, “
Understanding the Improved Stability of Hybrid Polymer Solar Cells Fabricated With Copper Electrodes
,”
ACS Appl. Mater. Interfaces
,
3
(
5
), pp.
1492
1501
.10.1021/am200067d
18.
Messina
,
S.
,
Nair
,
M. T. S.
, and
Nair
,
P. K.
,
2007
, “
Antimony Sulfide Thin Films in Chemically Deposited Thin Film Photovoltaic Cells
,”
Thin Solid Films
,
515
(
15
), pp.
5777
5782
.10.1016/j.tsf.2006.12.155
You do not currently have access to this content.