The thermal response of a large and complex city including the energy production aspects of it are explored using urbanized atmospheric mesoscale modeling. The Weather Research and Forecasting (WRF) Mesocale model is coupled to a multilayer urban canopy model that considers thermal and mechanical effects of the urban environment including a building scale energy model to account for anthropogenic heat contributions due to indoor–outdoor temperature differences. This new urban parameterization is used to evaluate the evolution and the resulting urban heat island (UHI) formation associated to a 3-day heat wave in New York City (NYC) during the summer of 2010. High-resolution (250 m) urban canopy parameters (UCPs) from the National Urban Database were employed to initialize the multilayer urban parameterization. The precision of the numerical simulations is evaluated using a range of observations. Data from a dense network of surface weather stations, wind profilers, and Lidar measurements are compared to model outputs over Manhattan and its surroundings during the 3-days event. The thermal and drag effects of buildings represented in the multilayer urban canopy model improves simulations over urban regions giving better estimates of the 2 m surface air temperature and 10 m wind speed. An accurate representation of the nocturnal urban heat island registered over NYC in the event was obtained from the improved model. The accuracy of the simulation is further assessed against more simplified urban parameterizations models with positive results with new approach. Results are further used to quantify the energy consumption of the buildings during the heat wave, and to explore alternatives to mitigate the intensity of the UHI during the extreme event.

References

1.
Childs
,
P. P.
, and
Raman
,
S.
,
2005
, “
Observations and Numerical Simulations of Urban Heat Island and Sea Breeze Circulations Over New York City
,”
Pure Appl. Geophys.
,
162
, pp.
1955
1980
.10.1007/s00024-005-2700-0
2.
Oke
,
T. R.
,
1982
, “
The Energetic Basis of the Urban Heat Inland
,”
Q. J. R. Meteorol. Soc.
,
108
, pp.
1
24
.10.1002/qj.49710845502
3.
Akbari
,
H.
,
Davis
,
S.
,
Dorsano
,
S.
,
Huang
,
J.
, and
Winnett
,
S.
, eds.,
1992
, “
Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing
,”
U.S. Environmental Protection Agency, Office of Policy Analysis, Climate Change Division
, Lawrence Berkeley National Laboratory Report No. LBL-31587.
4.
Gedzelman
,
S.
,
Austin
,
S.
,
Cermak
,
R.
,
Stefano
,
N.
,
Partridge
,
S.
,
Quesenberry
,
S.
, and
Robinson
,
D.
,
2003
, “
Mesoscale Aspects of the Urban Heat Island Around New York City
,”
Theor. Appl. Climatol.
,
75
, pp.
29
42
.10.1007/s00704-002-0724-2
5.
Gaffin
,
S.
,
Rosenzweig
,
C.
,
Khanbilvardi
,
R.
,
Parshall
,
L.
,
Mahani
,
S.
,
Glickman
,
H.
,
Goldberg
,
R.
,
Blake
,
R.
,
Slosberg
,
R.
, and
Hillel
,
D.
,
2008
, “
Variations in New York City's Urban Heat Island Strength Over Time and Space
,”
Theor. Appl. Climatol.
,
94
, pp.
1
11
.10.1007/s00704-007-0368-3
6.
Streutker
,
D.
,
2003
, “
Satellite-Measure Growth of the Urban Heat Island of Houston, Texas
,”
Remote Sens. Environ.
,
85
, pp.
282
289
.10.1016/S0034-4257(03)00007-5
7.
Martilli
,
A.
,
Clappier
,
A.
, and
Rotach
,
M.
,
2002
, “
An Urban Surface Exchange Parameterization for Mesoscale Models
,”
Boundary-Layer Meteor.
,
104
, pp.
261
304
.10.1023/A:1016099921195
8.
Salamanca
,
F.
, and
Martilli
,
A.
,
2009
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations. Part II: Validation With One Dimension Off-Line Simulations
,”
Theor. Appl. Climatol.
,
99
, pp.
345
356
.10.1007/s00704-009-0143-8
9.
Martilli
A.
,
2009
, “
On the Derivation of Input Parameters for Urban Canopy Models From Urban Morphological Datasets
,”
Boundary-Layer Meteor.
,
130
, pp.
301
306
.10.1007/s10546-008-9345-3
10.
Burian
,
S.
,
Augustus
,
N.
,
Jeyachandran
,
I.
, and
Brown
,
M.
,
2008
, “
Final Report for the National Building Statistics Database
,” Report No. LA-UR-08-1921, April 4.
11.
Taha
,
H.
,
1997
, “
Modeling the Impacts of Large Scale Albedo Changes on Ozone Air Quality in the South Coast Air Basin
,”
Atmos. Environ.
,
31
, pp.
1667
1676
.10.1016/S1352-2310(96)00336-6
12.
Solecki
,
W.
,
Rosenweig
,
C.
,
Parshall
,
L.
,
Pope
,
G.
,
Clark
,
M.
,
Cox
,
J.
, and
Wiencke
,
M.
,
2005
, “
Mitigation of the Urban Heat Island Effect in Urban New Jersey
,”
Environ. Haz.
,
6
, pp.
39
49
.10.1016/j.hazards.2004.12.002
13.
Rosenzweig
,
C.
,
Solecki
,
W.
,
Parshall
,
L.
,
Lynn
,
B.
,
Cox
,
J.
,
Goldberg
,
R.
,
Hodges
,
S.
,
Gaffin
,
S.
,
Slosberg
,
R.
,
Savio
,
P.
,
Dunstan
,
F.
, and
Watson
,
M.
,
2009
, “
Mitigating New York City's Heat Island
,”
BAMS
, pp.
1297
1312
.10.1175/2009BAMS2308.1
14.
Roberts
,
S.
,
Oke
,
T. R.
,
Grimmond
,
C.
, and
Voogt
,
J.
,
2006
, “
Comparison of Four Methods to Estimate Urban Heat Storage
,”
J. Appl. Meteor. Climatol.
,
45
, pp. 1766–1781.10.1175/JAM2432.1
15.
Miao
,
S.
, and
Chen
,
F.
,
2008
,
Formation of Horizontal Convective Rolls in Urban Areas
,”
Atmos. Res.
,
89
, pp.
298
304
.10.1016/j.atmosres.2008.02.013
16.
Kreider
,
J. F.
,
Rabi
,
A.
, and
Curtiss
,
P.
,
2007
,
Heating and Cooling of Buildings: Design for Efficiency
, 2nd ed.,
McGraw-Hill
,
New York
.
17.
Sailor
,
D. J.
, and
Lu
,
L.
,
2004
, “
A Top-Down Methodology for Developing Diurnal and Seasonal Anthropogenic Heating Profiles for Urban Areas
,”
Atmos. Environ.
,
38
, pp.
2737
2748
.10.1016/j.atmosenv.2004.01.034
You do not currently have access to this content.