Natural water has been disinfected using TiO2 as the fixed catalyst incorporated in a homemade photoreactor, in which the dimensions and the design parameters are representative of devices that are currently employed at larger scale. The catalyst was immobilized on the external surface of a cylinder of frosted glass situated in the longitudinal axis of a tubular glass reactor. Two alternative methods of immobilizing the catalyst on glass were studied: in the first, a commercial titanium oxide powder (Aeroxide® TiO2 P25) was mounted on a polymeric support; and in the second, it was applied by sol-gel deposition. Illumination was effected by installing the glass reactor in the irradiation chamber of a solar simulator. Under laboratory conditions, groundwater contaminated with cultured and wild bacteria was treated photocatalytically, and the influence of the photolysis, the pumping, and the catalysts was studied. The results obtained have demonstrated that the catalyst immobilized in the interior of the photoreactor presents similar results, in the disinfection of E. coli, as 0.5 g/l of TiO2 P25; and that, in 1.5 h approximately of simulated solar illumination (167 kWUVA s/m2) on the sol-gel deposit of TiO2, it is possible to eliminate 100% of the bacteria covered by international regulations in respect of water for human consumption. With regard to the aging assay of the system, it was observed at 250 h of operation a reduction in the effectiveness of the disinfection process. At 0 and 250 h of operation, the percentages of elimination of E. coli after 50 min of illumination were 100% and 99.5%, respectively. This reduction in the effectiveness of the process was due to the formation of a film of calcium carbonate adhering to the internal glass wall of the photoreactor, which is in contact with the liquid being treated, and to the presence of calcium carbonate precipitates on catalyst surface.

References

1.
UN, 2003, United Nations World Water Development Report: Water for People, Water for Life, www.unesco.org/water/wwap/wwdr/wwdr1/table_contents/index.shtmlwww.unesco.org/water/wwap/wwdr/wwdr1/table_contents/index.shtml.
2.
Muñoz
,
I.
,
Rieradevall
,
J.
,
Torrades
,
F.
,
Peral
,
J.
, and
Domènech
,
X.
, 2005, “
Environmental Assessment of Different Solar Driven Advanced Oxidation Processes
,”
Sol. Energy
,
79
(
4
), pp.
369
375
.
3.
DWI, 2000, “
DWI Consumer Market Research: Drinking Water Quality Report of Public Perceptions
,” www.dwi.gov.uk/consumer/marketr/cr2000.htmwww.dwi.gov.uk/consumer/marketr/cr2000.htm.
4.
Driedger
,
A. M.
,
Rennecker
,
J. L.
, and
Marinas
,
B. J.
, 2000, “
Sequential Inactivation of Cryptosporidium parvum Oocysts and Ozone and Free Chlorine
,”
Water Res.
,
34
(
14
), pp.
3591
3597
.
5.
Bull
,
R. J.
,
Krasner
,
S. W.
,
Daniel
,
P.
, and
Bull
,
R. D.
, 2001, “
Health Effects and Occurrence of Disinfection By-Products
,” AWWA Research Foundation and American Water Works Association, Denver, CO.
6.
Schilirò
,
T.
,
Pignata
,
C.
,
Rovere
,
R.
,
Fea
,
E.
, and
Gilli
,
G.
, 2009, “
The Endocrine Disrupting Activity of Surface Waters and of Wastewater Treatment Plant Effluents in Relation to Chlorination
,”
Chemosphere
,
75
, pp.
335
340
.
7.
Serpone
,
N.
, and
Pellizzetti
,
E.
, 1989,
Photocatalysis: Fundamentals and Applications
,
Wiley
,
New York.
8.
Kikuchi
,
Y.
,
Sunada
,
K.
,
Iyoda
,
T.
,
Hashimoto
,
K.
, and
Fujishima
,
A.
, 1997, “
Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect
,”
J. Photochem. Photobiol. A
,
106
, pp.
51
56
.
9.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2003, “
Photocatalytical Inactivation of E. coli: Effect of (Continuous–Intermittent) Light Intensity and of (Suspended–Fixed) TiO2 Concentration
,”
Appl. Catal. B
,
44
, pp.
263
284
.
10.
Huang
,
Z.
,
Maness
,
P.
,
Blake
,
D. M.
,
Wolfrum
,
E. J.
,
Smolinski
,
S. L.
, and
Jacoby
,
W. A.
, 2000, “
Bactericidal Mode of Titanium Dioxide Photocatalysis
,”
J. Photochem. Photobiol., A
,
130
(
2–3
), pp.
163
170
.
11.
Robertson
,
J. M. C.
,
Robertson
,
P. K. J.
, and
Lawton
,
L. A.
, 2005, “
A Comparison of the Effectiveness of TiO2 Photocatalysis and UVA Photolysis for the Destruction of Three Pathogenic Micro-Organisms
,”
J. Photochem. Photobiol., A
,
175
, pp.
51
56
.
12.
Sunada
,
K.
,
Watanabe
,
T.
, and
Hashimoto
,
K.
, 2003, “
Studies on Photokilling of Bacteria on TiO2 Thin Film
,”
J. Photochem. Photobiol., A.
156
(
1–3
), pp.
227
233
.
13.
Wainwright
,
M.
, 2000, “
Methylene Blue Derivatives-Suitable Photoantimicrobials For Blood Products Disinfection?
,”
Int. J. Antimicrob. Agents
,
16
(
4
), pp.
381
394
.
14.
Rincón
,
A. G.
,
Pulgarín
,
C.
,
Adler
,
N.
, and
Peringer
,
P.
, 2001, “
Interaction Between E. coli Inactivation and DBP-Precursors—Dihydroxybenzene Isomers— in the Photocatalytic Process of Drinking-Water Disinfection With TiO2
,”
J. Photochem. Photobiol., A
,
139
(
2–3
), pp.
233
241
.
15.
Matsunaga
,
T.
,
Tomoda
,
R.
,
Nakajima
,
T.
, and
Wake
,
H.
, 1985, “
Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders
,”
FEMS Microbiol. Lett.
,
29
(
1–2
), pp.
211
214
.
16.
McCullagh
,
C.
,
Robertson
,
J. M. C.
,
Bahnemann
,
D. W.
, and
Robertson
,
P. K. J.
, 2007, “
The Application of TiO2 Photocatalysis for Disinfection of Water Contaminated With Pathogenic Microorganims: A Review
,”
Res. Chem. Intermed.
,
33
(
3–5
), pp.
359
375
.
17.
Fernández
,
P.
,
Blanco
,
J.
,
Sichel
,
C.
, and
Malato
,
S.
, 2005, “
Water Disinfection by Solar Photocatalysis Using Compound Parabolic Collectors
,”
Catal. Today
,
101
(
3–4
), pp.
345
352
.
18.
Navntoft
,
C.
,
Araujo
,
P.
,
Litter
,
M. I.
,
Apella
,
M. C.
,
Fernández
,
D.
,
Puchulu
,
M. E.
,
Hidalgo
,
M. V.
, and
Blesa
,
M. A.
, 2007, “
Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, Tucumán, Argentina
,”
J. Sol. Energy Eng.
,
129
(
1
), pp.
127
134
.
19.
Rodríguez
,
J.
,
Jorge
,
C.
,
Zúñiga
,
P.
,
Palomino
,
J.
,
Zanabria
,
P.
,
Solís
,
J. L.
, and
Estrada
,
W.
, 2010, “
Solar Water Disinfection Studies With Supported TiO2 and Polymer-Supported Ru(II) Sensitizers in a Compound Parabolic Collector
,”
J. Sol. Energy Eng.
,
132
, pp.
1
5
.
20.
Ponce
,
S.
,
Carpio
,
E.
,
Venero
,
J.
,
Estrada
,
W.
, and
Rodríguez
,
J.
, 2009, “
Titanium Dioxide onto Polyethylene for Water Decontamination
,”
J. Adv. Oxid. Technol.
,
12
(
1
), pp.
81
86
.
21.
Rao
,
K. V. S.
,
Subrahmanyamb
,
M.
, and
Boule
,
P.
, 2004, “
Immobilized TiO2 Photocatalyst During Long-Term Use: Decrease of its Activity
,”
Appl. Catal.
, B,
49
, pp.
239
249
.
22.
WHO
, 2008,
World Health Organization Guidelines for Drinking-Water Quality
, 3rd ed., Vol.
1
,
Geneve
,
Switzerland
.
23.
Gelover
,
S.
,
Gómez
,
L. A.
,
Reyes
,
K.
, and
Leal
,
M. T.
, 2006, “
A Practical Demonstration of Water Disinfection Using TiO2 Films and Sunlight
,”
Water Res.
,
40
(
17
), pp.
3274
3280
.
24.
Malato
,
S.
,
Blanco
,
J.
,
Alarcón
,
D. C.
,
Maldonado
,
M. I.
,
Fernández-Ibañez
,
P.
, and
Gernjak
,
W.
, 2007, “
Photocatalytic Decontamination and Disinfection of Water With Solar Collectors
,”
Catal. Today
,
122
(
1–2
), pp.
137
149
.
25.
Rincón
,
A. G.
, and
Pulgarín
,
C.
, 2004, “
Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E. coli K12 Photocatalytic Inactivation by TiO2. Implications in Solar Water Disinfection
,”
Appl. Catal.
, B,
51
(
4
), pp.
283
302
.
26.
Quek
,
P. H.
, and
Hu
,
J.
, 2008, “
Indicators for Photoreactivation and Dark Repair Studies Following Ultraviolet Disinfection
,”
J. Ind. Microbiol. Biotechnol.
,
35
(
6
), pp.
533
541
.
27.
Bozzi
,
a.
,
Yuranova
,
T.
,
Guasaquillo
,
I.
,
Laub
,
D.
, and
Kiwi
,
J.
, 2005, “
Self-cleaning of Modified Cotton Textiles by TiO2 at Low Temperatures Under Daylight Irradiation
,”
J. Photochem. Photobiol.
, A,
174
, pp.
156
16
4.
28.
ISO 7899-2, 2000, “
Water Quality—Detection and Enumeration of Intestinal Enterococci. Part 2: Membrane Filtration Method
.”
29.
Directive 98/83/CE, Council Directive of 3 November on the quality of water intended for consumption, DOCE no. L 330, of 5 December 1998.
30.
Ubomba-Jaswa
,
E.
,
Navntoft
,
C.
,
Polo-López
,
I.
,
Fernández-Ibáñez
,
P.
, and
McGuigan
,
K. G.
, 2009, “
Solar Disinfection of Drinking Water (SODIS): An Investigation of the Effect of UVA Dose on Inactivation Efficiency
,”
Photochem. Photobiol. Sci.
,
8
(
5
), pp.
587
595
.
31.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Field Solar E. coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose an Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
,
77
(
5
), pp.
635
648
.
32.
Alrousan
,
D. M. A.
,
Dunlop
,
P. S. M.
,
McMurray
,
T. A.
, and
Byrne
,
J. A.
, 2009, “
Photocatalytic Inactivation of E. coli in Surface Water Using Immobilised Nanoparticle TiO2 Films
,”
Water Res.
,
43
(
1
), pp.
47
54
.
33.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Bactericidal Action of Illuminated TiO2 on Pure Escherichia coli and Natural Bacterial Consortia: Post-Irradiation Events in the Dark and Assessment of the Effective Disinfection Time
,”
Appl. Catal.
, B,
49
(
2
), pp.
99
112
.
34.
Álvarez
,
I.
,
Condón
,
S.
, and
Raso
,
J.
, 2006,
Pulsed Electric Fields Technology for the Food Industry, Science and Business Media
, New York, NY, pp.
97
129
.
35.
Gumy
,
D.
,
Rincon
,
A. G.
,
Hajdu
,
R.
, and
Pulgarin
,
C.
, 2006, “
Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed TiO2 Catalysts Study
,”
Sol. Energy
,
80
, pp.
1376
1381
.
36.
Marugaán
,
J.
,
van Grieken
,
R.
,
Sordo
,
C.
, and
Cruz
,
C.
, 2008, “
Kinetics of the Photocatalytic Disinfection of Escherichia coli Suspensions
,”
Appl. Catal.
, B,
82
, pp.
27
36
.
37.
Powder Diffraction Files (Int. Center for Diffraction Data); files 21-1272.
38.
Al-Amoudi
,
A.
, and
Lovitt
,
R. W.
, 2007, “
Fouling Strategies and the Cleaning System of NF Membranes and Factors Affecting Cleaning Efficiency
,”
J. Membrane Sci.
,
303
, pp.
4
28
.
39.
Campo
,
G.
,
Berregi
,
I.
,
Caracena
,
R.
, and
Santos
,
I.
, 2006, “
Quantitative Analysis of Malic and Citric Acids in Fruit Juices Using Proton Nuclear Magnetic Resonance Spectroscopy
,”
Anal. Chim. Acta
,
556
, pp.
462
468
.
You do not currently have access to this content.