The accurate modeling of the wind resource over complex terrain is required to optimize the micrositing of wind turbines. In this paper, an immersed boundary method that is used in connection with the Reynolds-averaged Navier–Stokes equations with k-ω turbulence model in order to efficiently simulate the wind flow over complex terrain is presented. With the immersed boundary method, only one Cartesian grid is required to simulate the wind flow for all wind directions, with only the rotation of the digital elevation map. Thus, the lengthy procedure of generating multiple grids for conventional rectangular domain is avoided. Wall functions are employed with the immersed boundary method in order to relax the stringent near-wall grid resolution requirements as well as to allow the effects of surface roughness to be accounted for. The immersed boundary method is applied to the complex terrain test case of Bolund Hill. The simulation results of wind speed and turbulent kinetic energy show good agreement with experiments for heights greater than 5 m above ground level.

References

1.
Salmon
,
J. R.
,
Teunissen
,
H. W.
,
Mickle
,
R. E.
, and
Taylor
,
P. A.
, 1988, “
The Kettles Hill Project: Field Observation, Wind-Tunnel Simulations and Numerical Model Predictions for Flow Over a Low Hill
,”
Boundary-Layer Meteorol.
,
43
, pp.
309
343
.
2.
Frehlich
,
R.
,
Meiller
,
Y.
, and
Jensen
,
M. L.
, 2007, “
Measurements of Boundary Layer Profiles With In Situ Sensors and Doppler Lidar
,”
Atmos. Oceanic Technol.
,
25
, pp.
1328
1340
.
3.
Mansour
,
M.
,
Kocer
,
G.
,
Lenherr
,
C.
,
Chokani
,
N.
, and
Abhari
,
R. S.
, 2011, “
Seven-Sensor Fast-Response Probe for Full-Scale Wind Turbine Flowfield Measurements
,”
J. Eng. Gas Turbines Power
,
133
(
8
), p.
018601
.
4.
Taylor
,
P. A.
, 1977, “
Some Numerical Studies of Surface Boundary-Layer Flow Above Gentle Topography
,”
Boundary-Layer Meteorol.
,
12
, pp.
439
465
.
5.
Bowen
,
A. J.
, and
Mortensen
,
N. G.
, 1996, “
Exploring the Limits of WasP the Wind Atlas Analysis and Application Program
,”
Proceedings of European Wind Energy Conference
, Goteborg, Sweden.
6.
Palma
,
J. M. L. M.
,
Castro
,
F. A.
,
Ribeiro
,
L. F.
,
Rodrigues
A. H.
, and
Pinto
,
A. P.
, 2008, “
Linear and Nonlinear Models in Wind Resource Assessment and Wind Turbine Micro-Siting in Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
96
, pp.
2308
2326
.
7.
Undheim
,
O.
, 2006, “
Microscale Flow Modeling Possibilities and Limitations
,”
Proceedings of European Wind Energy Conference
, Athens, Greece.
8.
Raithby
,
G. D.
,
Stubley
,
G. D.
, and
Taylor
,
P. A.
, 1987, “
The Askervein Hill Project: A Finite Control Volume Prediction on Three-Dimensional Flows Over the Hill
,”
Boundary-Layer Meteorol.
,
39
, pp.
107
132
.
9.
Ferreira
,
A. D.
,
Lopes
,
A. M. G.
,
Viegas
,
D. X.
, and
Sousa
,
A. C. M.
, 1995, “
Experimental and Numerical Simulation of Wind Flow Around Two-Dimensional Hills
,”
J. Wind Eng. Ind. Aerodyn.
,
54/55
, pp.
173
181
.
10.
Maurizi
,
A.
,
Palma
,
J. M. L. M.
, and
Castro
,
F. A.
, 1998, “
Numerical Simulation of the Atmospheric Flow in a Mountainous Region of the North of Portugal
,”
J. Wind Eng. Ind. Aerodyn.
,
74
, pp.
219
228
.
11.
Kim
,
H. G.
,
Patel
,
V. C.
, and
Lee
,
C. M.
, 2000, “
Numerical Simulation of Wind Flow Over Hilly Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
87
, pp.
45
60
.
12.
Castro
,
F. A.
,
Palma
,
J. M. L. M.
, and
Silva Lopes
,
A.
, 2003, “
Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier-Stokes Equations (k-ε Turbulence Model)
,”
Boundary-Layer Meteorol.
,
107
, pp.
501
530
.
13.
Brodeur
,
P.
, and
Masson
,
C.
, 2008, “
Numerical Site Calibration Over Complex Terrain
,”
J. Solar Energy Eng.
,
130
, p.
031020
.
14.
Porte-Agel
,
F.
,
Meneveau
,
C.
, and
Parlange
,
M. B.
, 2000, “
A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to Neutral Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
415
, pp.
261
284
.
15.
Allen
,
T.
, and
Brown
,
A.
, 2002, “
Large-Eddy Simulation of Turbulent Separated Flow Over Rough Hills
,”
Boundary-Layer Meteorol.
,
102
, pp.
177
198
.
16.
Silva Lopes
,
A.
,
Palma
,
J. M. L. M.
, and
Castro
,
F. A.
, 2007, “
Simulation of the Askervein Flow. Part 2: Large-Eddy Simulations
,”
Boundary-Layer Meteorol.
,
125
, pp.
85
108
.
17.
Bechmann
,
A.
,
Sørensen
,
N.
,
Berg
,
J.
,
Mann
,
J.
, and
Réthoré
,
P. E.
, 2011, “
The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models
,”
Boundary-Layer Meteorol.
(in press).
18.
Peskin
,
C. S.
, 1972, “
Flow Patterns Around Heart Valves: a Numerical Method
,”
J. Comput. Phys.
,
10
, pp.
252
271
.
19.
Majumdar
,
S.
,
Iaccarino
G.
, and
Durbin
,
P.
, 2001, “
RANS Solver With Adaptive Structured Boundary Non-Conforming Grids
,” in
Annual Research Briefs
,
Center for Turbulence Research
, pp.
353
366
.
20.
Balaras
,
E.
, 2004, “
Modeling Complex Boundaries Using an External Force Field on a Fixed Cartesian Grid in Large-Eddy Simulations
,”
Comput. Fluids
,
33
, pp.
375
404
.
21.
Kang
,
S.
,
Iaccarino
,
G.
, and
Ham
F.
, 2009, “
DNS of a Buoyancy-Dominated Turbulent Flow Using an Immersed Boundary Method
,”
J. Comput. Phys.
,
228
, pp.
3189
3208
.
22.
Goldstein
,
D.
,
Handler
R.
, and
Sirovich
L.
, 1993, “
Modeling a No-Slip Flow Boundary With an External Force
,”
J. Comput. Phys.
,
105
, pp.
354
366
.
23.
Saiki
,
E. M.
, and
Biringen
S.
, 1996, “
Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method
,”
Comput. Phys.
,
123
, pp.
450
465
.
24.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
, 2000, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
, pp.
35
60
.
25.
De Palma
,
P.
,
de Tullio
,
M. D.
,
Pascazio
,
G.
, and
Napolitano
,
M.
, 2006, “
An Immersed-Boundary Method for Compressible Viscous Flows
,”
Comput. Fluids
,
35
, pp.
693
702
.
26.
Kalitzin
,
G.
, and
Iaccariono
,
G.
, 2002, “
Turbulence Modeling in an Immersed-Boundary RANS Method
,”
Annual Research Briefs
,
Center for Turbulence Research
, pp.
415
426
.
27.
Lundquist
,
K. A.
,
Chow
,
K. F.
, and
Lundquist
J. K.
, 2010, “
An Immersed Boundary Method for the Weather Research and Forecasting Model
,”
Mon. Weather Rev.
,
138
, pp.
796
817
.
28.
Tullio
,
de M. D.
,
Palma
,
P. De
,
Pascazio
,
G.
, and
Napolitano
,
M.
, 2009, “
Wall Stress Models for an Immersed Boundary Method
,”
Academy Colloquium, Immersed Boundary Methods: Current Status and Future Research Directions
, Amsterdam, Netherland.
29.
Ni
,
R.
, 1981, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
, pp.
1565
1571
.
30.
Baldwin
,
B. S.
, and
Lomax
,
H.
, 1978, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
31.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
32.
Liu
,
F.
, and
Zheng
,
X.
, 1994, “
Staggered Finite Volume Scheme for Solving Cascade Flow With a k-ω Turbulence Model
,”
AIAA J.
,
32
, pp.
1589
1597
.
33.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2007, “
Three-Dimensional Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model
,”
J. Turbomach.
,
129
, pp.
258
268
.
34.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
, 2011, “
Terrain Effects on Wind Flow: Simulations With an Immersed Boundary Method
,”
ASME Turbo Expo
, Vancouver, Canada, Paper No. GT-2011-46240.
35.
Kim
,
H. G.
, and
Lee
,
C. M.
, 1998, “
Pollutant Dispersion Over Two-Dimensional Hilly Terrain
,”
KSME Int. J.
,
12
, pp.
96
111
.
36.
Berg
,
J.
,
Mann
,
J.
,
Bechmann
,
A.
,
Courtney
,
M.
, and
Jorgensen
,
H.
, 2011, “
The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill
,”
Boundary-Layer Meteorol.
(in press).
You do not currently have access to this content.