The oxidation of three-dimensionally ordered macroporous (3DOM) CeO2 (ceria) by H2O and CO2 at 1100 K is presented in comparison to the oxidation of nonordered mesoporous and sintered, low porosity ceria. 3DOM ceria, which features interconnected and ordered pores, increases the maximum H2 and CO production rates over the low porosity ceria by 125% and 260%, respectively, and increases the maximum H2 and CO production rates over the nonordered mesoporous cerium oxide by 75% and 175%, respectively. The increase in the kinetics of H2O and CO2 splitting with 3DOM ceria is attributed to its enhanced specific surface area and to its interconnected pore system that facilitates the transport of reacting species to and from oxidation sites.
Issue Section:
Research Papers
References
1.
Steinfeld
, A.
, 2005, “Solar Thermochemical Production of Hydrogen: A Review
,” Sol. Energy
, 78
, pp. 603
–615
.2.
Perkins
, C.
, and Weimer
, A. W.
, 2004, “Likely Near-Term Solar-Thermal Water Splitting Technologies
,” Int. J. Hydrogen Energy
, 23
, pp. 767
–774
.3.
Abanades
, S.
, Charvin
, P.
, Flamant
, G.
, and Neveu
, P.
, 2006, “Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,” Energy
, 31
, pp. 2805
–2822
.4.
Kodama
, T.
, and Gokon
, N.
, 2007, “Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,” Chem. Rev.
, 107
, pp. 4048
–4077
.5.
Meredig
, B.
, and Wolverton
, C.
, 2009, “First-Principles Thermodynamic Framework for the Evaluation of Thermochemical H2O- or CO2-Splitting Materials
,” Phys. Rev. B
, 80
, 245119
.6.
Venstrom
, L. J.
, and Davidson
, J. H.
, 2010, “Splitting Water and Carbon Dioxide via the Heterogeneous Oxidation of Zinc Vapor: Thermodynamic Considerations
,” J. Sol. Energy Eng.
, 133
, 011017
.7.
Charvin
, P.
, Abanades
, S.
, Lemont
, F.
, and Flamant
, G.
, 2008, “Experimental Study of SnO2/SnO/Sn Thermochemical Systems for Solar Production of Hydrogen
,” AIChE J.
, 54
, pp. 2759
–2767
.8.
Allendorf
, M. D.
, Diver
, R. B.
, Siegel
, N. P.
, and Miller
, J. E.
, 2008, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
,” Energy Fuels
, 22
, pp. 4115
–4124
.9.
Kodama
, T.
, Gokon
, N.
, and Yamamoto
, R.
, 2008, “Thermochemical Two-Step Water Splitting by ZrO2-Supported NixFe3−xO4 for Solar Hydrogen Production
,” Sol. Energy
, 82
, pp. 73
–79
.10.
Abanades
, S.
, and Flamant
, G.
, 2006, “Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,” Sol. Energy
, 80
, pp. 1611
–1623
.11.
Kaneko
, H.
, Miura
, T.
, Ishihara
, H.
, Taku
, S.
, Yokoyama
, T.
, Nakajima
, H.
, and Tamaura
, Y.
, 2007, “Reactive Ceramics of CeO2-MOx (M = Mn, Fe, Ni, Cu) for H2 Generation by Two-Step Water Splitting Using Concentrated Solar Thermal Energy
,” Energy
, 32
, pp. 656
–663
.12.
Chueh
, W. C.
, and Haile
, S. M.
, 2009, “Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,” ChemSusChem
, 2
, pp. 735
–739
.13.
Miller
, J. E.
, Allendorf
, M. D.
, Diver
, R. B.
, Evans
, L. R.
, Siegel
, N. P.
, and Stuecker
, J. N.
, 2008, “Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,” J. Mater. Sci.
, 43
, pp. 4714
–4728
.14.
Chueh
, W. C.
, and Haile
, S. M.
, 2010, “A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,” Philos. Trans. R. Soc. London, Ser. A
, 368
, pp. 3269
–3294
.15.
Abanades
, S.
, Legal
, A.
, Cordier
, A.
, Peraudeau
, G.
, Flamant
, G.
, and Julbe
, A.
, 2010, “Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,” J. Mater. Sci.
, 45
, pp. 4163
–4173
.16.
Chueh
, W. C.
, Falter
, C.
, Abbott
, M.
, Scipio
, D.
, Furler
, P.
, Haile
, S.
, and Steinfeld
, A.
, 2010, “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,” Science
, 330
, pp. 1797
–1801
.17.
Stein
, A.
, Li
, F.
, and Denny
, R.
, 2008, “Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles
,” Chem. Mater.
, 20
, pp. 649
–666
.18.
Zhang
, G.
, Zhao
, Z.
, Liu
, J.
, Jiang
, G.
, Duan
, A.
, Zheng
, J.
, Chen
, S.
, and Zhou
, R.
, 2010, “Three Dimensionally Ordered Macroporous Ce1-xZrxO2 Solid Solutions for Diesel Soot Combustion
,” Chem. Commun.
, 46
, pp. 457
–459
.19.
Tonti
, D.
, Martínez
, L.
, Torralva
, M. J.
, Enciso
, E.
, Roman
, E.
, and Sanz
, J.
, 2010, “Redox Properties of Ordered Macroporous Ce-Zr Mixed Oxides
,” J. Electrochem. Soc.
, 157
, pp. B1499
–B1504
.20.
Umeda
, G. A.
, Chueh
, W. C.
, Noailles
, L.
, Haile
, S. M.
, and Dunn
, B. S.
, 2008, “Inverse Opal Ceria-Zirconia: Architectural Engineering for Heterogeneous Catalysis
,” Energy Environ. Sci.
, 1
, pp. 484
–486
.21.
Sokolov
, S.
, Bell
, D.
, and Stein
, A.
, 2003, “Preparation and Characterization of Macroporous α-Alumina
,” J. Am. Ceram. Soc.
, 86
, pp. 1481
–1486
.22.
Kašpar
, J.
, Fornasiero
, P.
, and Graziani
, M.
, 1999, “Use of CeO2-Based Oxides in the Three-Way Catalysis
,” Catal. Today
, 50
, pp. 285
–298
.23.
Personal communication with Gregory Harris, a chemist from Alfa Aesar, on August 17, 2011.
24.
Koch
, C.
, Ovid’ko
, I.
, Seal
, S.
, and Veprek
, S.
, 2007, Structural Nanocrystalline Materials: Fundamentals and Applications
, Cambridge University Press
, Cambridge, UK
, pp. 93
–133
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.