The heterogeneous oxidation of zinc vapor is proposed as a promising reaction path for the exothermic step in the two-step Zn/ZnO solar thermochemical water and carbon dioxide splitting cycles. This approach circumvents mass transfer limitations encountered in the oxidation of solid or liquid zinc, promising rapid hydrogen and carbon monoxide production rates concurrent with a complete conversion of zinc to zinc oxide. In this paper, a parametric thermodynamic analysis is presented to quantify the benefit of achieving a rapid and complete conversion of zinc via the heterogeneous oxidation of zinc vapor. The conversion of zinc in polydisperse aerosol reactors has been limited to 20% for reaction times on the order of a minute, resulting in a cycle efficiency of 6%. The benefit of completely converting zinc via the heterogeneous oxidation of zinc vapor is an increase in efficiency to 27% and 31% for water and carbon dioxide splitting, respectively. The cycle efficiency could be higher if heat recuperation is implemented.

1.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen: A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
2.
Palumbo
,
R.
,
Lede
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Moller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a High-Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2503
2517
.
3.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
767
774
.
4.
Schoots
,
K.
,
Ferioli
,
F.
,
Kramer
,
G. J.
, and
van der Zwaan
,
B. C. C.
, 2008, “
Learning Curves for Hydrogen Production Technology: An Assessment of Observed Cost Reductions
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
2630
2645
.
5.
Wagner
,
C.
, 1933, “
Beitrag zur Theorie des Anlaufvorgangs
,”
Z. Phys. Chem. Abt. B
0372-9664,
21
, pp.
25
41
.
6.
Cabrera
,
N.
, and
Mott
,
N. F.
, 1949, “
Theory of the Oxidation of Metals
,”
Rep. Prog. Phys.
0034-4885,
12
, pp.
163
184
.
7.
Bazan
,
J.
,
Gschaider
,
M.
, and
Alimenti
,
G.
, 1999, “
Gravimetric Study of Interaction of Water Vapour With Metallic Zinc
,”
J. Therm Anal. Calorim.
1418-2874,
55
, pp.
569
579
.
8.
Berman
,
A.
, and
Epstein
,
M.
, 2000, “
The Kinetics of Hydrogen Production in the Oxidation of Liquid Zinc With Water Vapor
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
957
967
.
9.
Masel
,
R.
, 1996,
Principles of Adsorption and Reaction on Solid Surfaces
,
Wiley
,
New York
.
10.
Ernst
,
F. O.
,
Steinfeld
,
A.
, and
Pratsinis
,
S.
, 2009, “
Hydrolysis Rate of Submicron Zn Particles for Solar H2 Synthesis
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
1166
1175
.
11.
Funke
,
H. H.
,
Diaz
,
H.
,
Liang
,
X.
,
Carney
,
C. S.
,
Weimer
,
A. W.
, and
Li
,
P.
, 2008, “
Hydrogen Generation by Hydrolysis of Zinc Powder Aerosol
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
1127
1134
.
12.
Loutzenhiser
,
P. G.
,
Gálvez
,
M. E.
,
Hischier
,
I.
,
Stamatiou
,
A.
,
Frei
,
A.
, and
Steinfeld
,
A.
, 2009, “
CO2 Splitting via Two-Step Solar Thermochemical Cycles With Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis
,”
Energy Fuels
0887-0624,
23
, pp.
2832
2839
.
13.
Vishnevetsky
,
I.
, and
Epstein
,
M.
, 2007, “
Production of Hydrogen From Solar Zinc in Steam Atmosphere
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
2791
2802
.
14.
Park
,
K.
,
Lee
,
D.
,
Rai
,
A.
,
Mukherjee
,
D.
, and
Zachariah
,
M.
, 2005, “
Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation With Single Particle Mass Spectrometry
,”
J. Phys. Chem.
0022-3654,
109
, pp.
7290
7299
.
15.
Rai
,
A.
,
Park
,
K.
,
Zhou
,
L.
, and
Zachariah
,
M.
, 2006, “
Understanding the Mechanism of Aluminum Nanoparticle Oxidation
,”
Combust. Theory Modell.
1364-7830,
10
, pp.
843
859
.
16.
Ma
,
X.
, and
Zachariah
,
M.
, 2009, “
Oxidation Anisotropy and Size-Dependent Reaction Kinetics of Zinc Nanocrystals
,”
J. Phys. Chem. C
1932-7447,
113
, pp.
14644
14650
.
17.
Ma
,
X.
, and
Zachariah
,
M. R.
, 2010, “
Size-Resolved Kinetics of Zn Nanocrystal Hydrolysis for Hydrogen Generation
,”
Int. J. Hydrogen Energy
0360-3199,
35
, pp.
2268
2277
.
18.
Wegner
,
K.
,
Ly
,
H. C.
,
Weiss
,
R. J.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
In Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO/Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
55
61
.
19.
Weiss
,
R. J.
,
Ly
,
H. C.
,
Wegner
,
K.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2005, “
H2 Production by Zn Hydrolysis in a Hot-Wall Aerosol Reactor
,”
American Institute of Chemical Engineering: Particle Technology and Fluidization
,
51
, pp.
1966
1970
.
20.
Ernst
,
F. O.
,
Tricoli
,
A.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
Co-Synthesis of H2 and ZnO by In-Situ Zn Aerosol Formation and Hydrolysis
,”
Journal of the American Institute of Chemical Engineering
,
52
, pp.
3297
3303
.
21.
Abu Hamed
,
T.
,
Davidson
,
J. H.
, and
Stolzenburg
,
M.
, 2008, “
Hydrolysis of Evaporated Zn in a Hot Wall Flow Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
041010
.
22.
Abu Hamed
,
T.
,
Venstrom
,
L.
,
Alshare
,
A.
,
Brülhart
,
M.
, and
Davidson
,
J. H.
, 2009, “
Study of a Quench Device for the Synthesis and Hydrolysis of Zn Nanoparticles: Modeling and Experiments
,”
ASME J. Sol. Energy Eng.
0199-6231,
131
, p.
031018
.
23.
Melchior
,
T.
,
Piatkowski
,
N.
, and
Steinfeld
,
A.
, 2009, “
H2 Production by Steam-Quenching of Zn Vapor in a Hot-Wall Aerosol Flow Reactor
,”
Chem. Eng. Sci.
0009-2509,
64
, pp.
1095
1101
.
24.
Haltiwanger
,
J.
,
Venstrom
,
L.
, and
Davidson
,
J. H.
, 2009, “
Hydrolysis of Zn Particles in the Temperature Range 360 to 465 K
,”
Proceedings of the ASME Energy Sustainability and Heat Transfer Conference
, San Francisco, July.
25.
Clarke
,
J.
, and
Fray
,
D.
, 1979, “
Oxidation of Zinc Vapour by Hydrogen-Water Vapour Mixtures
,”
Trans. Inst. Min. Metall., Sect. C
0371-9553,
88
, pp.
C161
C166
.
26.
Stott
,
J.
, and
Fray
,
D.
, 1971, “
Oxidation of Zinc Vapour
,”
Advances in Extractive Metallurgy and Refining
,
Institution of Mining and Metallurgy
,
London
, pp.
95
105
.
27.
Clarke
,
J.
, and
Fray
,
D.
, 1978, “
The Rate of Deposition and the Morphology of Zinc Oxide Deposited From Zn(v)/CO/CO2/Ar Gas Mixtures
,”
J. Mater. Sci.
0022-2461,
13
, pp.
1921
1925
.
28.
Lewis
,
L.
, and
Cameron
,
A.
, 1995, “
Oxidation Kinetics of Zinc Vapor in CO:CO2 Mixtures: Part I. Comparison With Past Literature
,”
Metall. Mater. Trans. B
1073-5615,
26B
, pp.
911
918
.
29.
Lewis
,
L.
, and
Cameron
,
A.
, 1995, “
Oxidation Kinetics of Zinc Vapor in CO:CO2 Mixtures: Part II. Application of Plug Flow Concepts
,”
Metall. Mater. Trans. B
1073-5615,
26B
, pp.
919
924
.
30.
Osborne
,
J.
,
Rankin
,
W.
,
McCarthy
,
D.
, and
Swinbourne
,
D.
, 2001, “
The Oxidation of Zinc Vapour in CO–CO2–N2 Gas Mixtures
,”
Metall. Mater. Trans. B
1073-5615,
32B
, pp.
37
45
.
31.
Cox
,
A.
, and
Fray
,
D.
, 2000, “
Zinc Reoxidation in the Shaft of a Zinc-Lead Imperial Smelting Furnace—1: Zinc-Carbon-Oxygen System With Deposition Initiated on a Quartz Substrate and Subsequent Propagation on Zinc Oxide
,”
Trans. Inst. Min. Metall., Sect. C
0371-9553,
109
, pp.
C97
C104
.
32.
Cox
,
A.
, and
Fray
,
D.
, 2000, “
Zinc Reoxidation in the Shaft of a Zinc-Lead Imperial Smelting Furnace—2: Zinc-Carbon-Oxygen System in Combination With Sinter and Coke Substrates
,”
Trans. Inst. Min. Metall., Sect. C
0371-9553,
109
, pp.
C105
C111
.
33.
Cox
,
A.
, and
Fray
,
D.
, 2003, “
The Kinetics of the Oxidation of Zinc Vapour by Carbon Dioxide and Water Vapour on Quartz, Zinc Oxide, Sinter, and Coke Substrates
,”
Yazawa International Symposium on Metallurgical and Materials Processing: Principles and Technologies
, Vol.
1
, pp.
95
105
.
34.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
35.
Galvez
,
M. E.
,
Loutzenhiser
,
P. G.
,
Hischier
,
I.
, and
Steinfeld
,
A.
, 2008, “
CO2 Splitting Via Two-Step Solar Thermochemical Cycles With Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis
,”
Energy Fuels
0887-0624,
22
, pp.
3544
3550
.
36.
Charvin
,
P.
,
Abanades
,
S.
,
Lemort
,
F.
, and
Flamant
,
G.
, 2008, “
Analysis of Solar Chemical Processes for Hydrogen Production From Water Splitting Thermochemical Cycles
,”
Energy Convers. Manage.
0196-8904,
49
, pp.
1547
1556
.
38.
Müller
,
R.
, and
Steinfeld
,
A.
, 2008, “
H2O-Splitting Thermochemical Cycle Based on ZnO/Zn-Redox: Quenching the Effluents From the ZnO Dissociation
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
217
227
.
39.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermochemical Process Technology
,”
Encylopedia of Physical Science and Technology
,
R. A.
Meyers
, ed.,
Academic Press
, Vol.
15
, pp.
237
256
.
40.
Fletcher
,
E. A.
, and
Moen
,
R. L.
, 1977, “
Hydrogen and Oxygen From Water
,”
Science
0036-8075,
197
, pp.
1050
1056
.
You do not currently have access to this content.