New fatigue test results are presented for four multidirectional laminates of current and potential interest for wind turbine blades, representing three types of fibers: E-glass, WindStrand™ glass, and carbon, all with epoxy resins. A broad range of loading conditions is included for two of the laminates, with the results represented as mean and 9595 confidence level constant life diagrams. The constant life diagrams are then used to predict the performance under spectrum fatigue loading relative to an earlier material. Comparisons of the materials show significant improvements under tensile fatigue loading for carbon, WindStrand, and one of the E-glass fabrics relative to many E-glass laminates in the 0.5–0.6 fiber volume fraction range. The carbon fiber dominated laminate shows superior fatigue and static strengths, as well as stiffness, for all loading conditions.

1.
Mandell
,
J. F.
,
Samborsky
,
D. D.
, and
Cairns
,
D. S.
, 2002, “
Fatigue of Composite Materials and Substructures for Wind Turbine Blades
,” Contractor Report No. SAND2002-0771, Sandia National Laboratories, Albuquerque, NM.
2.
Nijssen
,
R P. L.
, 2006, “
Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites
,” Ph.D. thesis, Delft University, the Netherlands.
3.
Mandell
,
J. F.
, and
Samborsky
,
D. D.
, 2008, DOE/MSU Fatigue of Composite Materials Database. 2008 Update (www.sandia.gov/wind/other/973002upd0308.pdfwww.sandia.gov/wind/other/973002upd0308.pdf).
4.
Nijssen
,
R. P. L.
, 2006, “
OptiDAT—Fatigue of Wind Turbine Blade Materials Database
,” (www.kc-wmc.nl/optimat_bladeswww.kc-wmc.nl/optimat_blades).
5.
Sutherland
,
H. J.
, and
Mandell
,
J. F.
, 2005, “
Optimized Goodman Diagram for the Analysis of Fiberglass Composites Used in Wind Turbine Blades
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
563
569
.
6.
Mandell
,
J. F.
, and
Samborsky
,
D. D.
, 1997, “
DOE/MSU Composite Material Fatigue Database: Test Methods, Materials, and Analysis
,” Contractor Report No. SAND97-3002, Sandia National Laboratories, Albuquerque, NM
7.
Wahl
,
N. K.
,
Mandell
,
J. F.
, and
Samborsky
,
D. D.
, 2002, “
Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates
,” Contractor Report No. SAND2002-0546, Sandia National Laboratories, Albuquerque, NM.
8.
Wilson
,
T. J.
, 2007, “
Modeling of In-Plane and Interlaminar Fatigue Behavior of Glass and Carbon Fiber Composite Materials
,” MS thesis, Department of Mechanical Engineering, Montana State University, Bozeman, Montana.
9.
Mandell
,
J. F.
,
Samborsky
,
D. D.
,
Wahl
,
N. K.
, and
Sutherland
,
H. J.
, 2003, “
Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions
,”
ICCM-14, SME/ASC
, Paper No. 1811.
10.
Echtermeyer
,
A. T.
, 1994, “
Fatigue of Glass Reinforced Composites Described by One Standard Fatigue Lifetime Curve
,”
EWEA Conference
, pp.
391
396
.
11.
Peters
,
L.
,
Adolphs
,
G.
,
Bech
,
J.
, and
Brondsted
,
P.
, 2006, “
HiPer-tex WindStrand™: A New Generation of High Performance Reinforcement
,”
Proceedings of the 27th Riso International Symposium on Material Science: Polymer Composite Materials for Wind Power Turbines
,
H.
Lilholt
,
B.
Madsen
,
T. L.
Andersen
,
L. P.
Mikkelsen
, and
A.
Thygesen
, eds., pp.
297
305
.
12.
Sutherland
,
H. J.
, and
Mandell
,
J. F.
, 2005, “
The Effects of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons
,”
Wind Energy
1095-4244,
8
,
93
108
.
You do not currently have access to this content.