Results of a solar thermophotovoltaic (STPV) system study are reported. Modeling of the STPV module performance and the analysis of various parameters influencing the system are presented. The ways for the STPV system efficiency to increase and their magnitude are considered such as: improvement of the emitter radiation selectivity and application of selective filters for better matching the emitter radiation spectrum and cell photoresponse; application of the cells with a back side reflector for recycling the sub-band gap photons; and development of low-band gap tandem TPV cells for better utilization of the radiation spectrum. Sunlight concentrator and STPV modules were designed, fabricated, and tested under indoor and outdoor conditions. A cost-effective sunlight concentrator with Fresnel lens was developed as a primary concentrator and a secondary quartz meniscus lens ensured the high concentration ratio of 4000×, which is necessary for achieving the high efficiency of the concentrator–emitter system owing to trap escaping radiation. Several types of STPV modules have been developed and tested under concentrated sunlight. Photocurrent density of 4.5Acm2 was registered in a photoreceiver based on 1×1cm2GaSb cells under a solar powered tungsten emitter.

1.
Spirkl
,
W.
, and
Ries
,
H.
, 1985, “
Solar Thermophotovoltaics: An Assessment
,”
J. Appl. Phys.
0021-8979,
57
(
9
), pp.
4409
4414
.
2.
Davies
,
P. A.
, and
Luque
,
A.
, 1994, “
Solar Thermophotovoltaics: Brief Review and a New Look
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
33
, pp.
11
22
.
3.
Luque
,
A.
, and
Marti
,
A.
, 1999, “
Limiting Efficiency of Coupled Thermal and Photovoltaic Converters
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
58
, pp.
147
165
.
4.
Badescu
,
V.
, 2001, “
Thermodynamic Theory of Thermophotovoltaic Solar Energy Conversion
,”
J. Appl. Phys.
0021-8979,
90
(
12
), pp.
6476
6486
.
5.
Harder
,
N.-P.
, and
Würfel
,
P.
, 2003, “
Theoretical Limits of Thermophotovoltaic Solar Energy Conversion
,”
Semicond. Sci. Technol.
0268-1242,
18
, pp.
S151
157
.
6.
Cody
,
G. D.
, 1998, “
Theoretical Maximum Efficiencies for Thermophotovoltaic Devices
,”
Proceedings 4th NREL Conference on TPV Generation of Electricity
, Vol.
460
, Denver, CO, 11–14 October 1998, pp.
58
67
.
7.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. A.
,
Rumyantsev
,
V. D.
,
Gazarjan
,
P. Y.
, and
Vlasov
,
A. S.
, 2004, “
Solar Thermophotovoltaic Converters: Efficiency Potentialities
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
96
104
.
8.
Stone
,
K. W.
,
Fatemi
,
N. S.
, and
Garverick
,
L.
, 1996, “
Operation and Component Testing of a Solar Thermophotovoltaic Power System
,”
Proceedings 25th IEEE Photovoltaic Solar Energy Conference
, Washington, D.C., 13–17 May 1996, pp.
1421
1424
.
9.
Yugami
,
H.
,
Sai
,
H.
,
Nakamuro
,
K.
,
Nakagama
,
N.
, and
Ohtsuko
,
H.
, 2000, “
Solar Thermophotovoltaic Using Al2O3∕Er3Al5O12 Eutectic Composite Selective Emitter
,”
Proceedings 28th IEEE Photovoltaic Solar Energy Conference
, Anchorage, AK, 15–22 September 2000, pp.
1214
1217
.
10.
Andreev
,
V. M.
, and
Khvostikov
,
V. P.
, 2003, “
Solar Thermophotovoltaic Converters
,”
Proceedings of 3rd JRC Workshop
The Path to Ultra-high Efficient Photovoltaics, Ispra, Italy, 2–3 October 2003, pp.
83
102
.
11.
Rumyantsev
,
V. D.
,
Khvostikov
,
V. P.
,
Gazaryan
,
P. Y.
,
Khvostikova
,
O. A.
,
Sadchikov
,
N. A.
,
Vlasov
,
A. S.
,
Ionova
,
E. A.
, and
Andreev
,
V. M.
, 2004, “
Structural Features of Solar TPV Systems
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
79
87
.
12.
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Gazaryan
,
P. Y.
,
Khvostikova
,
O. A.
,
Kaluzhniy
,
N. A.
, and
Andreev
,
V. M.
, 2004, “
TPV Cells Based on Ge, GaSb and InAs Related Compounds for Solar Powered TPV Systems
,”
Proceedings of the 19th European Photovoltaic Solar Energy Conference
, Paris, France, 7–11 June 2004, pp.
105
108
.
13.
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Shvarts
,
M. Z.
,
Khvostikova
,
O. A.
,
Gazaryan
,
P. Y.
,
Sorokina
,
S. V.
,
Kaluzhniy
,
N. A.
, and
Andreev
,
V. M.
, 2004, “
Thermophotovoltaic Cells Based on Low-Bandgap Compounds
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
436
444
.
15.
Malyshev
,
V. I.
, 1979,
Introduction to Experimental Spectroscopy
,
Nauka
, Moscow, Russia (in Russian).
16.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. A.
,
Vlasov
,
A. S.
,
Gazaryan
,
P. Y.
,
Sadchikov
,
N. A.
, and
Rumyantsev
,
V. D.
, 2005, “
Solar Thermophotovoltaic System with High Temperature Tungsten Emitter
,”
Proc. 31st IEEE Photovoltaic Specialist Conference
, Orlando, FL, 3–7 January 2005, pp.
671
74
.
17.
Rusin
,
S. P.
, and
Peletsky
,
V. E.
, 1987,
Thermal Irradiation of Cavities
,
Energoatomizdat
, Russia, Chap. 5 (in Russian).
18.
Bedford
,
R. E.
,
Ma
,
C. K.
,
Chu
,
Z.
,
Sun
,
Y.
, and
Chen
,
S.
, 1985, “
Emissivities of Diffuse Cavities. IV: Isothermal and Nonisothermal Cylindro-Inner-Cones
,”
Appl. Opt.
0003-6935,
24
(
18
), pp.
2971
2980
.
19.
Bedford
,
R. E.
, and
Ma
,
C. K.
, 1975, “
Emissitivies of Diffuse Cavities, II: Isothermal and Nonisothermal Cylindro-Cones
,”
J. Opt. Soc. Am.
0030-3941,
65
(
5
), pp.
565
572
.
20.
Bedford
,
R. E.
, and
Ma
,
C. K.
, 1975, “
Emissitivies of Diffuse Cavities, II: Isothermal and Nonisothermal Cones and Cylindres
,”
J. Opt. Soc. Am.
0030-3941,
64
(
3
), pp.
339
349
.
21.
Henry
,
C. H.
, 1980, “
Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells
,”
J. Appl. Phys.
0021-8979,
51
(
8
), pp.
4494
4500
.
22.
Andreev
,
V. M.
, 2004, “
Solar Cells for TPV Converters
,” in
Next Generation Photovoltaics. High Efficiency through Full Spectrum Utilization
,
IoP
, Bristol, U.K., Chap. 11, p.
246
.
23.
Gombert
,
A.
, 2003, “
An Overview of TPV Emitter Technologies
,”
AIP Conf. Proc.
,
653
, pp.
123
131
.
24.
Lin
,
S. Y.
,
Moreno
,
J.
, and
Fleming
,
J. G.
, 2003, “
Three-Dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Power Generation
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
380
382
.
25.
Bitnar
,
B.
,
Durisch
,
W.
,
Palfinger
,
G.
,
von Roth
,
F.
,
Vogt
,
U.
,
Bronstrup
,
A.
, and
Seiler
,
D.
, 2004, “
Practical Thermophotovoltaic Generators
,”
Semiconductors
1063-7826,
38
, pp.
941
945
.
26.
Rumyantsev
,
V. D.
,
Chalov
,
A. E.
,
Ionova
,
E. A.
,
Larionov
,
V. R.
, and
Andreev
,
V. M.
, 2004, “
Concentrator PV Modules with Multi-Junction Cells and Primary/Secondary Refractive Optical Elements
,”
Proceedings of the 19th European Photovoltaic Solar Energy Conference
, Paris, France, 7–11 June 2004, pp.
2090
2094
.
27.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Khvostikova
,
O. A.
,
Gazaryan
,
P. Y.
,
Sadchikkov
,
N. A.
,
Sorokina
,
S. V.
,
Zadiranov
,
Y. M.
, and
Shvarts
,
M. Z.
, 2005, “
Thermophotovoltaic Converters with Solar Powered High Temperature Emitters
,”
Proc. 20th Europeen Photovoltaic Solar Energy Conference
, Barcelona, Spain, 6–10 June 2005, pp.
8
13
.
28.
Doyle
,
E. F.
,
Becker
,
F. E.
,
Shukla
,
K. C.
, and
Fraas
,
L. M.
, 1999, “
Design of a Thermophotovoltaic Battery Substitute
,”
AIP Conf. Proc.
0094-243X,
460
, pp.
351
361
.
29.
Schlegl
,
T.
,
Dimroth
,
F.
,
Ohm
,
A.
, and
Bett
,
A. W.
, 2004, “
TPV Modules Based on GaSb Substrates
,”
AIP Conf. Proc.
0094-243X,
738
, pp.
285
293
.
You do not currently have access to this content.