A commercial pesticide, namely metasystox, has been chosen to study its detoxification in aqueous solution by means of solar photocatalysis employing titanium dioxide. Initial toxicity/biodegradability has been checked by means of active sludges respirometry and the Zahn–Wellens test. Laboratory scale experiments indicate that significant detoxification (by approximately one order of magnitude) of a 0.05gL solution of the active species can be achieved in only 3h of solar irradiation due to the nearly complete elimination of the active compound, methyloxydemeton. In this case, total organic carbon (TOC) measurements cannot be used to evaluate the process as nonactive organic excipients interfere in the measurement. The experiment has been scaled-up to 25L in a solar pilot plant; also in this case more than 75% elimination of methyloxydemeton is achieved in 5h irradiation (1400kJ). Besides detoxification (80% initial inhibition of the active sludges and 20% at the end of the experiments), and moderate TOC reduction (20%) are observed together with an increase of the surface tension of the solutions, probably due to elimination of excipients having surfactant properties.

1.
Giacomazzi
,
S.
, and
Cochet
,
N.
, 2004, “
Environmental Impact of Diuron Transformation: A Review
,”
Chemosphere
0045-6535,
56
, pp.
1021
1032
.
2.
Ikehata
,
K.
, and
El-Din
,
M. G.
, 2005, “
Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part I)
,”
Ozone: Sci. Eng.
0191-9512,
27
, pp.
83
114
.
3.
Brillas
,
E.
,
Cabot
,
P. L.
,
Rodríguez
,
R. M.
,
Arias
,
C.
,
Garrido
,
J. A.
, and
Oliver
,
R.
, 2004, “
Degradation of the Herbicide 2,4-DP by Catalyzed Ozonation Using the O3∕Fe2+∕UVA System
,”
Appl. Catal., B
0926-3373,
51
, pp.
117
127
.
4.
Chu
,
W.
,
Chan
,
K. W.
, and
Kwan
,
C. Y.
, 2004, “
Modeling the Ozonation of Herbicide 2,4-DP Through a Kinetic Approach
,”
Chemosphere
0045-6535,
55
, pp.
647
652
.
5.
Burrows
,
H. D.
,
Canle
,
M.
,
Santaballa
,
J. A.
, and
Steenken
,
S.
, 2002, “
Reaction Pathways and Mechanisms of Photodegradation of Pesticides
,”
J. Photochem. Photobiol., B
1011-1344,
67
, pp.
71
108
.
6.
Drzewicz
,
P.
,
Nalecz-Jawecki
,
G.
,
Gryz
,
M.
,
Sawicki
,
J.
,
Bojanowska-Czaika
,
A.
,
Gluszewski
,
W.
,
Kulisa
,
K.
,
Wolkewicz
,
S.
, and
Trojanowicz
,
M.
, 2004, “
Monitoring of Toxicity During Degradation of Selected Pesticides Using Ionizing Radiation
,”
Chemosphere
0045-6535,
57
, pp.
135
145
.
7.
Vlyssides
,
A.
,
Arapoglou
,
D.
,
Mai
,
S.
, and
Barampouti
,
E. M.
, 2005, “
Electrochemical Detoxification of Four Phosphorothioate Pesticides Stocks
,”
Chemosphere
0045-6535,
58
, pp.
439
447
.
8.
Mestankova
,
H.
,
Mailhot
,
G.
,
Pilichowski
,
J. F.
,
Krysa
,
J.
,
Jirkovsky
,
J.
, and
Bolte
,
M.
, 2004, “
Mineralisation of Monuron Photoinduced by Fe(III) in Aqueous Solution
,”
Chemosphere
0045-6535,
57
, pp.
1307
1315
.
9.
Paterlini
,
W. C.
, and
Pupo Nogueira
,
R. F.
, 2005, “
Multivariate Analysis of Photo-Fenton Degradation of Herbicides Tebuthiuron, Diuron and 2,4-D
,”
Chemosphere
0045-6535,
58
, pp.
1107
1116
.
10.
Malato
,
S.
,
Blanco
,
J.
,
Caceres
,
J.
,
Fernandez-Alba
,
A. R.
,
Agüera
,
A.
, and
Rodríguez
,
A.
, 2002, “
Photocatalytic Treatment of Water-Soluble Pesticides by Photo-Fenton and TiO2 Using Solar Energy
,”
Catal. Today
0920-5861,
76
, pp.
209
220
.
11.
Litter
,
M.
, and
Mansilla
,
H. D.
, 2003,
Solar Light Assisted Arsenic Removal in Rural Communities of Latin America
, Agencia Interamericana para la Cooperación y el Desarrollo (AICD).
12.
Konstantinou
,
I. K.
, and
Albanis
,
T. A.
, 2003, “
Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways
,”
Appl. Catal., B
0926-3373,
42
, pp.
319
335
.
13.
Devipriya
,
S.
, and
Yesodharan
,
S.
, 2005, “
Photocatalytic Degradation of Pesticide Contaminants in Water
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
86
, pp.
309
348
.
14.
Ishiki
,
R. R.
,
Ishiki
,
H. M.
, and
Takashima
,
K.
, 2005, “
Photocatalytic Degradation of Imazethapyr Herbicide at TiO2∕H2O Interface
,”
Chemosphere
0045-6535,
58
, pp.
1461
1469
.
15.
Zhu
,
X.
,
Yuan
,
C.
,
Bao
,
Y.
,
Yang
,
J.
, and
Wu
,
Y.
, 2005, “
Photocatalytic Degradation of Pesticide Pyridaben on TiO2 Particles
,”
J. Mol. Catal. A: Chem.
1381-1169,
229
, pp.
95
105
.
16.
Aramendia
,
M. A.
,
Marinas
,
A.
,
Marinas
,
J. M.
,
Moreno
,
J. M.
, and
Urbano
,
F. J.
, 2005, “
Photocatalytic Degradation of Herbicide Fluoroxypyr in Aqueous Suspensions of TiO2
,”
Catal. Today
0920-5861,
101
, pp.
187
193
.
17.
Hincapié
,
M.
,
Maldonado
,
M. I.
,
Oller
,
I.
,
Gernjak
,
W.
,
Sánchez-Pérez
,
J. A.
,
Ballesteros
,
M. M.
, and
Malato
,
S.
, 2005, “
Solar Photocatalytic Degradation and Detoxification of EU Priority Substances
,”
Catal. Today
0920-5861,
101
, pp.
203
210
.
18.
Bandala
,
E. R.
,
Gelover
,
S.
,
Leal
,
M. T.
,
Arancibia-Bulnes
,
C.
,
Jiménez
,
A.
, and
Estrada
,
C. A.
, 2002, “
Solar Photocatalytic Degradation of Aldrin
,”
Catal. Today
0920-5861,
76
, pp.
189
199
.
19.
Guillard
,
C.
,
Disdier
,
J.
,
Monnet
,
C.
,
Dussaud
,
J.
,
Malato
,
S.
,
Blanco
,
J.
,
Maldonado
,
M. I.
, and
Herrmann
,
J. M.
, 2003, “
Solar Efficiency of a New Deposited Titania Photocatalyst: Chlorophenol, Pesticide and Dye Removal Applications
,”
Appl. Catal., B
0926-3373,
46
, pp.
319
332
.
21.
Official Journal of the European Union OJ L 227, 11.9. 2003, pp.
45
49
.
22.
Shankar
,
V. M.
,
Cheralathan
,
K. K.
,
Arabindoo
,
B.
,
Palanichamy
,
M.
, and
Murugesan
,
V.
, 2004, “
Enhanced Photocatalytic Activity for the Destruction of Monocrotophos by TiO2∕Hβ
,”
J. Mol. Catal. A: Chem.
1381-1169,
223
, pp.
195
200
.
23.
Topalov
,
A.
,
Molnar-Gabor
,
D.
,
Abramovic
,
B.
,
Korom
,
S.
, and
Pericin
,
D.
, 2003, “
Photocatalytic Removal of the Insecticide Fenitrothion From Water Sensitized with TiO2
,”
J. Photochem. Photobiol., A
1010-6030,
160
, pp.
195
201
.
24.
Kerzhentsev
,
M.
,
Guillard
,
C.
,
Herrmann
,
J. M.
, and
Pichat
,
P.
, 1996, “
Photocatalytic Pollutant Removal in Water at Room Temperature: Case Study of the Total Degradation of the Insecticide Fenitrothion (Phosphorothoic Acid o,o-Dimethyl-o-(3-Methyl-4-Nitro-Phenyl Ester)
,”
Catal. Today
0920-5861,
27
, pp.
215
220
.
25.
Doong
,
R. A.
, and
Chang
,
W. H.
, 1997, “
Photoassisted Titanium Dioxide Mediated Degradation of Organophosphorous Pesticides by Hydrogen Peroxide
,”
J. Photochem. Photobiol., A
1010-6030,
107
, pp.
239
244
.
26.
Miranda
,
M. A.
,
Amat
,
A. M.
,
Arques
,
A.
,
Beneyto
,
H.
,
García
,
A.
, and
Seguí
,
S.
, 2003, “
Ozonisation Coupled With Biological Degradation for Wastewater Treatment: A Mechanistically Based Study
,”
Chemosphere
0045-6535,
53
, pp.
79
86
.
27.
Sher
,
M. I.
,
Arbuckle
,
W. B.
, and
Shen
,
Z.
, 2000, “
Oxygen Uptake Rate Inhibition With PACT™ Sludge
,”
J. Hazard. Mater.
0304-3894,
73
, pp.
129
142
.
28.
Miranda
,
M. A.
,
Amat
,
A. M.
,
Arques
,
A.
, and
Seguí
,
S.
, 2004, “
Photo-Fenton Reaction for the Abatement of Commercial Surfactants in a Solar Pilot Plant
,”
Sol. Energy
0038-092X,
77
, pp.
559
566
.
29.
Farre
,
M.
,
Fernandez
,
J.
,
Paez
,
M.
,
Granada
,
L.
,
Barba
,
L.
,
Gutierrez
,
H. M.
,
Pulgarin
,
C.
, and
Barcelo
,
D.
, 2002, “
Analysis and Toxicity of Methomyl and Ametryn After Biodegradation
,”
Anal. Bioanal. Chem.
1618-2642,
373
, pp.
704
709
.
You do not currently have access to this content.