A comparative study between four different solar collectors was carried out using oxalic acid and the pesticide carbaryl as model contaminants. The comparison was performed by means of a figure-of-merit developed for solar driven Advanced Oxidation Technology systems by the International Union of Pure and Applied Chemistry (IUPAC) for standardization purposes. It was found that there is a relationship between the photocatalyst concentration and the overall solar collector performance. Compound parabolic concentrator was the geometry with the highest turnover rate in the photocatalytic process of oxalic acid, followed by the V trough collector, the parabolic concentrator, and, finally, the tubular collector. When a comparative analysis was carried out using the figure of merit (collector area per order, ACO), the parabolic trough concentrator (PTC) showed the highest efficiency (lower ACO values) at low photocatalyst loads. The V trough collector and the compound parabolic collector showed similar ACO values, which decreased as the photocatalyst concentration increased. The tubular collector was the worst in all catalyst concentration ranges, with the higher collection surface by the order of oxalic acid. Photocatalytic degradation of the carbamic pesticide was tested using the same experimental arrangement used for oxalic acid. In this case, the use of the figure-of-merit allowed us to observe the same trend as that displayed for oxalic acid, but with slightly higher ACO values. Results of this work demonstrate that a comparison between different reactor geometries for photocatalytic processes is viable using this figure-of-merit approach and that the generated results can be useful in the standardization of a methodology for solar driven processes comparison and provide important data for the scaling up of the process.

1.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
, and
Richter
,
C.
, 2001, “
Photocatalysis With Solar Energy at Pilot-Plant Scale: An Overview
,”
Appl. Catal., B
0926-3373,
37
, pp.
1
15
.
2.
Romero
,
M.
,
Blanco
,
J.
,
Sánchez
,
B.
,
Vidal
,
A.
,
Malato
,
S.
,
Cardona
,
A. I.
, and
Garcia
,
E.
, 1999, “
Solar Photocatalytic Degradation of Water And Air Pollutants: Challenges and Perspectives
,”
Sol. Energy
0038-092X,
66
, pp.
169
182
.
3.
Blake
,
D.
, 2001, “
Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds From Water and Air
,” Technical Report NREL/TP-510-31319.
National Renewable Energy Laboratory
, Golden CO, USA.
4.
Gimenez
,
J.
,
Curcó
,
D.
, and
Queral
,
M. A.
, 1999, “
Photocatalytic Treatment of Phenol and 2,4-Dichlorophenol in a Solar Plant in the Way to Scaling-Up
,”
Catal. Today
0920-5861,
54
, pp.
229
243
.
5.
Blanco
,
J.
,
Malato
,
S.
,
Maldonado
,
M. I.
,
Vincent
,
M.
,
Vincent
,
J. P.
,
Sánchez
,
M.
, and
Myro
,
E.
, 2004, “
The Albaida Plant: First Commercial Step in Solar Detoxification
,”
Proc. of the Global Symposium on Recycling, Treatment and Clean Technology
, REWAS’04 September 26–29, 2004.
Madrid, Spain.
6.
Bolton
,
J. R.
,
Bircher
,
K. G.
,
Tumas
,
W.
, and
Tolman
,
C. A.
, 2001, “
Figures-of-Merit For the Technical Development and Application of Advanced Oxidation Technologies For Both Electric- and Solar-Driven Systems
,”
Pure Appl. Chem.
0033-4545,
73
, pp.
627
637
.
7.
Hilgendorff
,
M.
,
Bockelmann
,
D.
,
Nogueira
,
R. F. P.
,
Weichgrebe
,
D.
,
Jardim
,
W. F.
,
Bahnemann
,
D.
, and
Goslich
,
R.
, 1992, “
Photocatalytic Decomposition of Aliphatic Haolgenated Hydrocarbons in Water: Laboratory Studies and Solar Applications
,” In
Proceedings of the 6th International Syposium on Solar Thermal Concentrating Technologies
, Mojacar, Spain. pp.
1167
1181
, Vol.
2
.
8.
Bandala
,
E. R.
,
Arancibia
,
C. A.
,
Orozco
,
S. L.
, and
Estrada
,
C.
, 2004, “
Solar Photoreactors Comparison Based on Oxalic Acid Photocatalytic Degradation
,”
Sol. Energy
0038-092X,
77
, pp.
503
512
.
9.
Bahnemann
,
D. W.
,
Bockelmann
,
D.
,
Goslich
,
R.
, and
Higendorff
,
M.
, 1994, “
Photocatalytic Detoxification of Polluted Aquifers: Novel Catalysis and Solar Applications
,” in
Aquatic and Surface Photochemistry
, edited by
G. R.
Helz
,
R. G.
Zepp
, and
D. G.
Crosby
,
Lewis Publishers
, Boca Raton, FL, pp.
349
367
.
10.
Bockelmann
,
D.
,
Weichgrebe
,
D.
,
Goslich
,
R.
, and
Bahnemann
,
D.
, 1995, “
Concentrating Versus Non-Concentrating Reactors For Solar Water Detoxification
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
38
, pp.
441
451
.
11.
Goslich
,
R.
,
Dillert
,
R.
, and
Bahnemann
,
D.
, 1997, “
Solar Water Treatment: Principles and Reactors
,”
Water Sci. Technol.
0273-1223,
35
, pp.
137
148
.
12.
Curcó
,
D.
,
Malato
,
S.
,
Blanco
,
J.
,
Giménez
,
J.
, and
Marco
,
P.
, 1996, “
Photocatalytic Degradation of Phenol: Comparison Between Pilot-Plant-Scale and Laboratory Results
,”
Sol. Energy
0038-092X,
56
, pp.
387
400
.
13.
Malato
,
S.
,
Blanco
,
J.
,
Richter
,
C.
,
Curcó
,
D.
, and
Jiménez
,
J.
, 1997, “
Low Concentrating CPC Collectors For Photocatalytic Water Detoxification: Comparison With a Medium Concentrating Solar Collector
,”
Water Resour.
0097-8078,
35
, pp.
157
164
.
14.
Brandi
,
R. J.
,
Alfano
,
O. M.
, and
Cassano
,
A. E.
, 1999, “
Collection Efficiencies of UV Radiation in Solar Photocatalytic Reactors. Comparison of Flat Plate and Parabolic Trough Reactors With a Rigorous Mathematical Model
,”
J. Adv. Oxid. Technol.
1203-8407,
4
, pp.
76
84
.
15.
Curcó
,
D.
,
Malato
,
S.
,
Blanco
,
J.
, and
Gimenez
,
J.
, 1996, “
Photocatalysis and Radiation Absorption in a Solar Plant
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
44
, pp.
199
217
.
16.
French
,
M. I.
,
Ayllón
,
J. A.
,
Peral
,
J.
, and
Domenech
,
X.
, 2002, “
Photocatalytic Degradation of Short-Chain Organic Diacids
,”
Catal. Today
0920-5861,
2772
, pp.
1
13
.
17.
Casella
,
R. J.
,
Garrigues
,
A.
,
Stelli
,
R. E.
, and
De la Guardia
,
M.
, 2000, “
Spectrometric Determination of Carbaryl By On-Line Elution After its Preconcentration Onto Polyurethane Foam
,”
Talanta
0039-9140,
52
, pp.
717
725
.
18.
Arancibia-Bulnes
,
C.
, and
Cuevas
,
S. A.
, 2004, “
Modeling of the Radiation Field in a Parabolic Trough Solar Photocatalytic Reactor
,”
Sol. Energy
0038-092X,
76
, pp.
615
622
.
19.
Jiménez
,
A. E.
,
Estrada
,
C. A.
,
Cota
,
A.
, and
Román
,
A.
, 2000, “
Photocatalytic Degradation of DBSNa Using Solar Energy
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
60
, pp.
85
95
.
20.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
,
Alarcón
,
D.
,
Maldonado
,
M. I.
,
Cáceres
,
J.
, and
Gernjak
,
W.
, 2003, “
Applied Studies in Solar Photocatalysis Detoxification: An Overview
,”
Sol. Energy
0038-092X,
75
, pp.
329
336
.
21.
Arancibia-Bulnes
,
C.
,
Bandala
,
E. R.
, and
Estrada
,
C. A.
, 2002, “
Radiation Absorption and Rate Constants For Carbaryl Photocatalytic Degradation in a Solar Collector
,”
Catal. Today
0920-5861,
76
, pp.
149
159
.
22.
Blanco
,
J.
, and
Malato
,
S.
, 2001, “
Solar Detoxification, World Solar Programme 1996–2005, Natural Sciences, Basic and Engineering Sciences
,”
UNESCO Publications
, www.unesco.org/science/wsp/publications/solar.htmwww.unesco.org/science/wsp/publications/solar.htm.
23.
Bandala
,
E. R.
, 2004, “
Comparative Study of Solar Concentration Systems For its Application on Pesticide Photocatalysis
,” Ph.D. thesis. National Autonomous University of Mexico, Mexico, D.F. (in Spanish).
You do not currently have access to this content.