A promising method for the conversion and storage of solar energy into hydrogen is the dissociation of water into oxygen and hydrogen, carried out via a two-step process using metal oxide redox systems such as mixed iron oxides, coated upon multi-channeled honeycomb ceramic supports capable of absorbing solar irradiation, in a configuration similar to that encountered in automobile exhaust catalytic converters. With this configuration, the whole process can be carried out in a single solar energy converter, the process temperature can be significantly lowered compared to other thermo-chemical cycles and the recombination of oxygen and hydrogen is prevented by fixing the oxygen in the metal oxide. For the realization of the integrated concept, research work proceeded in three parallel directions: synthesis of active redox systems, manufacture of ceramic honeycomb supports and manufacture, testing and optimization of operating conditions of a thermochemical solar receiver-reactor. The receiver-reactor has been developed and installed in the solar furnace in Cologne, Germany. It was proven that solar hydrogen production is feasible by this process demonstrating that multicycling of the process was possible in principle.

1.
Fletcher
,
E. A.
, and
Moen
,
R. L.
, 1977, “
Hydrogen and Oxygen From Water
,”
Science
0036-8075,
197
, pp.
1050
1056
.
2.
Funk
,
J. E.
, and
Bowman
,
M. G.
, 1986, “
Renewable Hydrogen Energy From Solar Thermal Central Receiver Systems
,”
Proc. Third International Symposium on Hydrogen From Renewable Energy
,
Honolulu, HI
, pp.
201
213
.
3.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1587
1599
.
4.
Tamaura
,
Y.
,
Kojima
,
M.
,
Sano
,
T.
,
Ueda
,
Y.
,
Hasegawa
,
N.
, and
Tsuji
,
M.
, 1998, “
Thermodynamic Evaluation of Water Splitting by a Cation Excessive (Ni,Mn) Ferrite
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
1185
1191
.
5.
Sturzenegger
,
M.
, and
Nüesch
,
P.
, 1999, “
Efficiency Analysis for a Manganese-Oxide-Based Thermochemical Cycle
,”
Energy
0360-5442,
24
, pp.
959
970
.
6.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production via a Two-Step Water Splitting Thermochemical Cycle Based on Zn∕ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
7.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
, 1999, “
Design Aspect of Solar Thermochemical Engineering—A Case Study: Two-Step Water Splitting Cycle Using the Fe3O4∕FeO Redox System
,”
Sol. Energy
0038-092X,
65
(
1
), pp.
43
53
.
8.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
9.
Aoki
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
,
Ishihara
,
H.
,
Suzuki
,
A.
, and
Tamaura
,
Y.
, 2004, “
The ZnFe2O4∕(ZnO+Fe3O4) System for H2 Production Using Concentrated Solar Energy
,”
Solid State Ionics
0167-2738,
172
, pp.
113
116
.
10.
Ehrensberger
,
K.
,
Frei
,
A.
,
Kuhn
,
P.
,
Oswald
,
H. R.
, and
Hug
,
P.
, 1995, “
Comperative Experimental Investigations of Water-Splitting Reaction With Iron Oxide Fr1−yO and Iron Manganese Oxides (Fe1−xMnX)1−yO
,”
Solid State Ionics
0167-2738,
78
, pp.
151
160
.
11.
Heck
,
R. M.
, and
Farrauto
,
R. J.
, 1995,
Catalytic Air Pollution Control-Commercial Technology
,
Van Nostrand Reinhold
,
New York
.
12.
Konstandopoulos
,
A. G.
,
Zarvalis
,
D.
,
Papaioannou
,
E.
,
Vlachos
,
N. D.
,
Boretto
,
G.
,
Pidria
,
M. F.
,
Faraldi
,
P.
,
Piacenza
,
O.
,
Prenninger
,
P.
,
Cartus
,
T.
,
Schreier
,
H.
,
Brandstatter
,
W.
,
Wassermayr
,
C.
,
Lepperhof
,
G.
,
Scholz
,
V.
,
Luers
,
B.
,
Schnitzler
,
J.
,
Claussen
,
M.
,
Wollmann
,
A.
,
Maly
,
M.
,
Tsotridis
,
G.
,
Vaglieco
,
B. M.
,
Merola
,
S. S.
,
Webster
,
D.
,
Bergeal
,
D.
,
Gorsmann
,
C.
,
Obernosterer
,
H.
,
Fino
,
D.
,
Russo
,
N.
,
Saracco
,
G.
,
Specchia
,
V.
,
Moral
,
N.
,
D’Anna
,
A.
,
D’Alessio
,
A.
,
Zahoransky
,
R.
,
Laile
,
E.
,
Schmidt
,
S.
, and
Ranalli
,
M.
, 2004, “
The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe
,” SAE Tech. Paper No. 2004-01–0694 (SP-1861).
13.
Sorenson
,
S. C.
,
Hoej
,
J. W.
, and
Stobbe
,
P.
, 1994, “
Flow Characteristics of SiC Diesel Particulate Filter Material
,” SAE Tech. Paper No. 940236 (SP-1020).
14.
Itoh
,
A.
,
Shimato
,
K.
,
Komori
,
T.
,
Okazoe
,
H.
,
Yamada
,
T.
,
Niimura
,
K.
, and
Watanabe
,
Y.
, 1993, “
Study of SiC Application to Diesel Particulate Filter (Part 1): Material Development
,” SAE Tech. Paper No. 930360 (SP-943).
15.
Konstandopoulos
,
A. G.
,
Papaioannou
,
E.
,
Zarvalis
,
D.
,
Skopa
,
S.
,
Baltzopoulou
,
P.
,
Kladopoulou
,
E.
,
Kostoglou
,
M.
, and
Lorentzou
,
S.
, 2005, “
Catalytic Filter Systems With Direct and Indirect Soot Oxidation Activity
,” SAE Tech. Paper No. 2005-01-0670.
16.
Hoffschmidt
,
B.
,
Fernández
,
V.
,
Konstandopoulos
,
A. G.
,
Mavroidis
,
I.
,
Romero
,
M.
,
Stobbe
,
P.
, and
Téllez
,
F.
, 2001, “
Development of Ceramic Volumetric Receiver Technology
,”
Proceedings of Fifth Cologne Solar Symposium
, June 21, Forschungsbericht 2001-10, DLR,
Germany
, pp.
51
61
.
17.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
, and
Rietbrock
,
P.
, 2004, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties
,”
Energy
0360-5442,
29
(
5–6
), pp.
823
833
.
18.
Rios
,
E.
,
Chen
,
Y.-Y.
,
Gracia
,
M.
,
Marco
,
J. F.
,
Gancedo
,
J. R.
, and
Gautier
,
J. L.
, 2001, “
Influence of the Partial Replacement of Fe by Mn on the Electrocatalytic Activity for Oxygen Evolution in the Li(1−0.5x)Fe(1.5*+1)Mn(1−x)O4 spinel system
,”
Electrochim. Acta
0013-4686,
47
, pp.
559
566
.
19.
Neumann
,
A.
, and
Groer
,
U.
, 1996, “
Experimenting With Concentrated Sunlight Using the DLR Solar Furnace
,”
Sol. Energy
0038-092X,
58
, pp.
181
190
.
20.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
, 2005, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
0038-092X,
79
(
4
), pp.
409
421
.
21.
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Evdou
,
A.
,
Agrafiotis
,
C.
, and
Konstandopoulos
,
A. G.
, 2004, “
Redox Materials for Hydrogen Production From the Water Decomposition Reaction
,”
Chem. Eng. Trans.
,
4
, pp.
43
48
.
22.
Takahashi
,
Y.
,
Aoki
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
,
Suzuki
,
A.
, and
Tamaura
,
Y.
, 2004, “
Oxygen-Gas-Releasing Reaction of Zn Ferrite by Xe Lamp Beam Irradiation in Air at 1800K
,”
Solid State Ionics
0167-2738,
172
, pp.
89
91
.
You do not currently have access to this content.