Abstract

The dynamic response of a Duffing system from self-induced resonance to system resonance is studied in this paper. From numerical simulation, it is found that the system response gradually transits from self-induced resonance to system resonance with the increase of the pulse amplitude of the signal. In order to describe this process, we define the quality factor of the system response. With the evolution from self-induced resonance to system resonance, the quality factor gradually increases from 0 to 1. Then, based on the evolution, a novel method is developed to evaluate the severity of rolling bearing early damage. The results show that the method can be used not only to describe the process of a rolling bearing from healthy to damaged, but also to evaluate the severity of the early damage of a rolling bearing. The quality factor is a key index to reflect the severity of a rolling bearing. In addition, the sensitivity of the quality factor is superior to other traditional indices formerly used in the early damage evaluation. The effective method gives a new way for rolling bearing early damage evaluation.

References

1.
Alevras
,
P.
,
2021
, “
On the Effect of the Electrical Load on Vibration Energy Harvesting Under Stochastic Resonance
,”
ASME J. Risk Uncertainty Part B
,
7
(
1
), p.
010902
.10.1115/1.4049209
2.
Limonov
,
M. F.
,
2021
, “
Fano Resonance for Applications
,”
Adv. Opt. Photonics
,
13
(
3
), pp.
703
771
.10.1364/AOP.420731
3.
Chen
,
Y.
,
Qiu
,
S.
,
He
,
Z.
,
Yan
,
F.
,
Li
,
R.
, and
Feng
,
Y.
,
2021
, “
Comparative Analysis of Indentation and Magnetic Resonance Elastography for Measuring Viscoelastic Properties
,”
Acta Mech. Sin.
,
37
(
3
), pp.
527
536
.10.1007/s10409-020-01042-2
4.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.10.1103/RevModPhys.70.223
5.
Landa
,
P. S.
, and
McClintock
,
P. V. E.
,
2000
, “
Vibrational Resonance
,”
J. Phys. A Math.
,
33
(
45
), pp.
L433
L438
.10.1088/0305-4470/33/45/103
6.
Zhang
,
S.
,
Yang
,
J.
,
Zhang
,
J.
,
Liu
,
H.
, and
Hu
,
E.
,
2019
, “
On Bearing Fault Diagnosis by Nonlinear System Resonance
,”
Nonlinear Dyn.
,
98
(
3
), pp.
2035
2052
.10.1007/s11071-019-05305-x
7.
Muratov
,
C. B.
,
Vanden-Eijnden
,
E.
, and
Weinan
,
E.
,
2005
, “
Self-Induced Stochastic Resonance in Excitable Systems
,”
Phys. D
,
210
(
3–4
), pp.
227
240
.10.1016/j.physd.2005.07.014
8.
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1997
, “
Coherence Resonance in a Noise-Driven Excitable System
,”
Phys. Rev. Lett.
,
78
(
5
), pp.
775
778
.10.1103/PhysRevLett.78.775
9.
Dybiec
,
B.
, and
Gudowskanowak
,
E.
,
2006
, “
Stochastic Resonance: The Role of Alpha Stable Noises
,”
Acta Phys. Pol. B
,
37
(
5
), p.
1479
.https://www.researchgate.net/publication/252313527_Stochastic_Resonance_the_Role_of_alpha_Stable_Noises
10.
Wellens
,
T.
,
Shatokhin
,
V.
, and
Buchleitner
,
A.
,
2004
, “
Stochastic Resonance
,”
Rep. Prog. Phys.
,
67
(
1
), pp.
45
105
.10.1088/0034-4885/67/1/R02
11.
López
,
C.
,
Zhong
,
W.
,
Lu
,
S.
,
Cong
,
F.
, and
Cortese
,
I.
,
2017
, “
Stochastic Resonance in an Underdamped System With FitzHug-Nagumo Potential for Weak Signal Detection
,”
J. Sound Vib.
,
411
, pp.
34
46
.10.1016/j.jsv.2017.08.043
12.
He
,
L.
,
Tan
,
C.
, and
Zhang
,
G.
,
2021
, “
Research on Standard Three-Well Stochastic Resonance System and Its Application in Early Bearing Fault Diagnosis
,”
Eur. Phys. J. Plus
,
136
(
7
), p.
759
.10.1140/epjp/s13360-021-01741-0
13.
Zhang
,
S.
,
Yao
,
Y.
, and
Zhu
,
Z.
,
2019
, “
Stochastic Resonance in an Overdamped System With a Fractional Power Nonlinearity: Analytical and Re-Scaled Analysis
,”
Eur. Phys. J. Plus
,
134
(
3
), p.
115
.10.1140/epjp/i2019-12480-x
14.
Lu
,
S. L.
,
He
,
Q.
, and
Zhang
,
H.
,
2015
, “
Enhanced Rotating Machine Fault Diagnosis Based on Time-Delayed Feedback Stochastic Resonance
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051008
.10.1115/1.4030346
15.
Wu
,
C.
,
Wang
,
Z.
,
Yang
,
J.
,
Huang
,
D.
, and
Sanjuán
,
M. A. F.
,
2020
, “
Adaptive Piecewise Re-Scaled Stochastic Resonance Excited by the LFM Signal
,”
Eur. Phys. J. Plus
,
135
(
1
), p.
130
.10.1140/epjp/s13360-020-00195-0
16.
Xiao
,
L.
,
Zhang
,
X. H.
,
Lu
,
S. L.
,
Xia
,
T.
, and
Xi
,
L.
,
2019
, “
A Novel Weak-Fault Detection Technique for Rolling Element Bearing Based on Vibrational Resonance
,”
J. Sound Vib.
,
438
, pp.
490
505
.10.1016/j.jsv.2018.09.039
17.
Liu
,
Y. B.
,
Dai
,
Z. J.
,
Lu
,
S. L.
,
Zhao
,
J.
, and
Shen
,
J.
,
2017
, “
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System
,”
Shock Vib.
,
2017
(
2017
), p.
5716296
.10.1155/2017/5716296
18.
Yamakou
,
M. E.
, and
Jost
,
J.
,
2019
, “
Control of Coherence Resonance by Self-Induced Stochastic Resonance in a Multiplex Neural Network
,”
Phys. Rev. E
,
100
(
2
), p.
022313
.10.1103/PhysRevE.100.022313
19.
Chen
,
Y.
,
Zhang
,
T.
,
Luo
,
Z.
, and
Sun
,
K.
,
2019
, “
A Novel Rolling Bearing Fault Diagnosis and Severity Analysis Method
,”
Appl. Sci.
,
9
(
11
), p.
2356
.10.3390/app9112356
20.
Zhang
,
S.
,
Zhang
,
Y.
,
Li
,
L.
,
Wang
,
S.
, and
Xiao
,
Y.
,
2018
, “
An Effective Health Indicator for Rolling Elements Bearing Based on Data Space Occupancy
,”
Struct. Health Monit.
,
17
(
1
), pp.
3
14
.10.1177/1475921716682432
21.
Yu
,
K.
,
Lin
,
T. R.
, and
Tan
,
J.
,
2020
, “
A Bearing Fault and Severity Diagnostic Technique Using Adaptive Deep Belief Networks and Dempster–Shafer Theory
,”
Struct. Health Monit.
,
19
(
1
), pp.
240
261
.10.1177/1475921719841690
22.
Hemmati
,
F.
,
Orfali
,
W.
, and
Gadala
,
M. S.
,
2016
, “
Roller Bearing Acoustic Signature Extraction by Wavelet Packet Transform, Applications in Fault Detection and Size Estimation
,”
Appl. Acoust.
,
104
, pp.
101
118
.10.1016/j.apacoust.2015.11.003
23.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neurofuzzy Inference System
,”
ASME J. Risk Uncertainty Part B
,
7
(
1
), p.
011001
.10.1115/1.4048656
24.
Zhang
,
W.
, and
Zhou
,
J.
,
2019
, “
A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition
,”
Entropy
,
21
(
7
), p.
680
.10.3390/e21070680
25.
Cerrada
,
M.
,
Sánchez
,
R.-V.
,
Li
,
C.
,
Pacheco
,
F.
,
Cabrera
,
D.
,
Valente de Oliveira
,
J.
, and
Vásquez
,
R. E.
,
2018
, “
A Review on Data-Driven Fault Severity Assessment in Rolling Bearings
,”
Mech. Syst. Signal Process.
,
99
, pp.
169
196
.10.1016/j.ymssp.2017.06.012
26.
Kumar
,
A.
,
Zhou
,
Y.
,
Gandhi
,
C. P.
,
Kumar
,
R.
, and
Xiang
,
J.
,
2020
, “
Bearing Defect Size Assessment Using Wavelet Transform Based Deep Convolutional Neural Network (DCNN)
,”
Alex. Eng. J.
,
59
(
2
), pp.
999
1012
.10.1016/j.aej.2020.03.034
27.
Leng
,
Y. G.
,
Leng
,
Y. S.
,
Wang
,
T. Y.
, and
Guo
,
Y.
,
2006
, “
Numerical Analysis and Engineering Application of Large Parameter Stochastic Resonance
,”
J. Sound Vib.
,
292
(
3–5
), pp.
788
801
.10.1016/j.jsv.2005.09.040
28.
Tan
,
J.
,
Chen
,
X.
,
Wang
,
J.
,
Chen
,
H.
,
Cao
,
H.
,
Zi
,
Y.
, and
He
,
Z.
,
2009
, “
Study of Frequency-Shifted and Re-Scaling Stochastic Resonance and Its Application to Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
811
822
.10.1016/j.ymssp.2008.07.011
29.
He
,
Q.
, and
Wang
,
J.
,
2012
, “
Effects of Multiscale Noise Tuning on Stochastic Resonance for Weak Signal Detection
,”
Digital Signal Process.
,
22
(
4
), pp.
614
627
.10.1016/j.dsp.2012.02.008
30.
Huang
,
D. W.
,
Yang
,
J. H.
,
Zhang
,
J. L.
, and
Liu
,
H. G.
,
2018
, “
An Improved Adaptive Stochastic Resonance Method for Improving Efficiency of Bearing Faults Diagnosis
,”
Proc. Inst. Mech. Eng. C-J. Mec.
,
232
(
13
), pp.
2352
2368
.10.1177/0954406217719924
31.
Xu
,
Y. F.
,
Gao
,
J.
,
Chen
,
G. C.
, and
Yu
,
J. S.
,
2011
, “
Quantum Particle Swarm Optimization Algorithm
,”
Appl. Mech. Mater.
,
63–64
, pp.
106
110
.10.4028/www.scientific.net/AMM.63-64.106
32.
Zhang
,
M.
,
Jiang
,
Z.
, and
Feng
,
K.
,
2017
, “
Research on Variational Mode Decomposition in Rolling Bearings Fault Diagnosis of the Multistage Centrifugal Pump
,”
Mech. Syst. Signal Pr.
,
93
, pp.
460
493
.10.1016/j.ymssp.2017.02.013
33.
Wang
,
Y. F.
, and
Kootsookos
,
P. J.
,
1998
, “
Modeling of Low Shaft Speed Bearing Faults for Condition Monitoring
,”
Mech. Syst. Signal Pr.
,
12
(
3
), pp.
415
426
.10.1006/mssp.1997.0149
34.
Williams
,
T.
,
Ribadeneira
,
X.
,
Billington
,
S.
, and
Kurfess
,
T.
,
2001
, “
Rolling Element Bearing Diagnostics in Run-to-Failure Lifetime Testing
,”
Mech. Syst. Signal Pr.
,
15
(
5
), pp.
979
993
.10.1006/mssp.2001.1418
35.
Pan
,
Z. Z.
,
Meng
,
Z.
,
Chen
,
Z. J.
,
Gao
,
W.
, and
Shi
,
Y.
,
2020
, “
A Two-Stage Method Based on Extreme Learning Machine for Predicting the Remaining Useful Life of Rolling-Element Bearings
,”
Mech. Syst. Signal Pr.
,
144
, p.
106899
.10.1016/j.ymssp.2020.106899
36.
Shi
,
P. M.
,
Liang
,
K.
, and
Zhao
,
N.
,
2017
, “
Intelligent Fault Diagnosis for Gears Based on Deep Learning Feature Extraction and Particle Swarm Optimization SVM State Identification
,”
China Mech. Eng.
,
9
(
28
), pp.
1056
1061
.http://en.cnki.com.cn/Article_en/CJFDTotal-ZGJX201709009.htm
37.
Li
,
M.
,
Yang
,
J. H.
, and
Xu
,
J. W.
,
2009
, “
Trend Analysis Method Via Manifold Evolution in High Dimensional Space for State of Machinery Equipment
,”
China Mech. Eng.
,
45
(
02
), pp.
213
218
.10.3901/JME.2009.02.213
38.
Yang
,
J. H.
,
Huang
,
D. W.
,
Zhou
,
D. J.
, and
Liu
,
H. G.
,
2020
, “
Optimal IMF Selection and Unknown Fault Feature Extraction for Rolling Bearings With Different Defect Modes
,”
Measurement
,
157
, p.
107660
.10.1016/j.measurement.2020.107660
You do not currently have access to this content.