Abstract

Wind turbines suffer from mass imbalance due to manufacturing, installation, and severe climatic conditions. Condition monitoring systems are essential to reduce costs in the wind energy sector. Many attempts were made to improve the detection of faults at an early stage to plan predictive maintenance strategies, but effective methods have not yet been developed. Artificial intelligence has a huge potential in the wind turbine industry. However, several shortcomings related to the datasets still need to be overcome. Thus, the research question developed for this paper was “Can data augmentation and fusion techniques enhance the mass imbalance diagnostics methods applied to wind turbines using deep learning algorithms?” The specific aims developed were: (i) to perform sensitivity analysis on classification based on how many samples/sample frequencies are required for stabilized results; (ii) to classify the imbalance levels using Gramian angular summation field and Gramian angular difference field and compare against data fusion; and (iii) to classify the imbalance levels using data fusion for augmented data. Convolutional neural network (CNN) techniques were employed to detect rotor mass imbalance for a multiclass problem using the estimated rotor speed as an input variable. A 1.5-MW turbine model was considered and a database was built using the software turbsim, fast, and simulink. The model was tested under different wind speeds and turbulence intensities. The data augmentation and fusion techniques used along with CNN techniques showed improvement in the classification and hence the diagnostics of wind turbines.

References

1.
Global Wind Energy Council
,
2021
,
Global Wind Report 2021
, Brussels, Belgium.https://gwec.net/global-wind-report-2021/
2.
Leite
,
G.
,
deNovaes
,
P.
,
Araújo
,
A. M.
, and
Rosas
,
P. A. C.
,
2018
, “
Prognostic Techniques Applied to Maintenance of Wind Turbines: A Concise and Specific Review
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
1917
1925
.10.1016/j.rser.2017.06.002
3.
Kusnick
,
J.
,
Adams
,
D. E.
, and
Griffith
,
D. T.
,
2015
, “
Wind Turbine Rotor Imbalance Detection Using Nacelle and Blade Measurements
,”
Wind Energy
,
18
(
2
), pp.
267
276
.10.1002/we.1696
4.
Krause
,
T.
, and
Ostermann
,
J.
,
2020
, “
Damage Detection for Wind Turbine Rotor Blades Using Airborne Sound
,”
Struct. Control Heal. Monit.
,
27
(
5
), pp.
1
15
.10.1002/stc.2520
5.
Niebsch
,
J.
, and
Ramlau
,
R.
,
2014
, “
Simultaneous Estimation of Mass and Aerodynamic Rotor Imbalances for Wind Turbines
,”
J. Math. Ind.
,
4
(
1
), p.
12
.10.1186/2190-5983-4-12
6.
Niebsch
,
J.
,
Ramlau
,
R.
, and
Nguyen
,
T. T.
,
2010
, “
Mass and Aerodynamic Imbalance Estimates of Wind Turbines
,”
Energies
,
3
(
4
), pp.
696
710
.10.3390/en3040696
7.
Shahriar
,
M. R.
,
Borghesani
,
P.
, and
Tan
,
A. C. C.
,
2015
, “
Speed-Based Diagnostics of Aerodynamic and Mass Imbalance in Large Wind Turbines
,”
Proceedings of IEEE ASME International Conference on Advanced Intelligent Mechatronics
, Busan, South Korea, July 7–11, pp.
796
801
.10.1109/AIM.2015.7222635
8.
Zhao
,
P.
,
Li
,
X.
, and
Yang
,
L.
,
2017
, “
Research on Mass Imbalance Fault of Wind Turbine Based on Virtual Prototype
,”
Third International Conference on Mechatronics and Mechanical Engineering
,
E. D. P. Sciences
,
France
, Feb. 9, p.
06001
.10.1051/matecconf/20179506001
9.
Cacciola
,
S.
,
Riboldi
,
C. E. D.
, and
Croce
,
A.
,
2018
, “
Monitoring Rotor Aerodynamic and Mass Imbalances Through a Self-Balancing Control
,”
J. Phys. Conf. Ser.
,
1037
, p.
032041
.10.1088/1742-6596/1037/3/032041
10.
Zhang
,
G.
,
Wang
,
G.
,
Xu
,
D.
, and
Zhao
,
N.
,
2016
, “
ADALINE-Network-Based PLL for Position Sensorless Interior Permanent Magnet Synchronous Motor Drives
,”
IEEE Trans. Power Electron.
,
31
(
2
), pp.
1450
1460
.10.1109/TPEL.2015.2424256
11.
Bernardes
,
T.
,
Montagner
,
V. F.
,
Grundling
,
H. A.
, and
Pinheiro
,
H.
,
2014
, “
Discrete-Time Sliding Mode Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1679
1691
.10.1109/TIE.2013.2267700
12.
Song
,
X.
,
Fang
,
J.
,
Han
,
B.
, and
Zheng
,
S.
,
2016
, “
Adaptive Compensation Method for High-Speed Surface PMSM Sensorless Drives of EMF-Based Position Estimation Error
,”
IEEE Trans. Power Electron.
,
31
(
2
), pp.
1438
1449
.10.1109/TPEL.2015.2423319
13.
Zhao
,
Y.
,
Qiao
,
W.
, and
Wu
,
L.
,
2015
, “
Dead-Time Effect Analysis and Compensation for a Sliding-Mode Position Observer-Based Sensorless IPMSM Control System
,”
IEEE Trans. Ind. Appl.
,
51
(
3
), pp.
2528
2535
.10.1109/TIA.2014.2372094
14.
Xu
,
D.
,
Wang
,
B.
,
Zhang
,
G.
,
Wang
,
G.
, and
Yu
,
Y.
,
2018
, “
A Review of Sensorless Control Methods for AC Motor Drives
,”
CES Trans. Electr. Mach. Syst.
,
2
(
1
), pp.
104
115
.10.23919/TEMS.2018.8326456
15.
Wang
,
G.
,
Valla
,
M.
, and
Solsona
,
J.
,
2020
, “
Position Sensorless Permanent Magnet Synchronous Machine Drives-A Review
,”
IEEE Trans. Ind. Electron.
,
67
(
7
), pp.
5830
5842
.10.1109/TIE.2019.2955409
16.
Gong
,
X.
, and
Qiao
,
W.
,
2012
, “
Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals
,”
IEEE Trans. Energy Convers.
,
27
(
2
), pp.
468
476
.10.1109/TEC.2012.2189008
17.
da Rosa
,
L. D.
,
Hübner
,
G. R.
,
Franchi
,
C. M.
,
Pinheiro
,
H.
,
de Souza
,
C. E.
,
Pereira
,
T. P.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2019
, “
Wind Turbine Blade Mass Imbalance Detection Using Artificial Intelligence
,”
Brazil Wind Power Conference and Exhibition
, Sao Paolo, Brazil, May 28–30, pp.
229
245
.https://abeeolica.org.br/wp-content/uploads/2019/07/ID-148-1551476572-Wind-Turbine-Blade-Mass-Imbalance-Detection-Using-Artificial-Intelligence.pdf
18.
Hübner
,
G. R.
,
Pinheiro
,
H.
,
de Souza
,
C. E.
,
Franchi
,
C. M.
,
da Rosa
,
L. D.
, and
Dias
,
J. P.
,
2021
, “
Detection of Mass Imbalance in the Rotor of Wind Turbines Using Support Vector Machine
,”
Renew. Energy
,
170
, pp.
49
59
.10.1016/j.renene.2021.01.080
19.
Wang
,
T.
,
Qin
,
Z.
,
Zhang
,
S.
, and
Zhang
,
C.
,
2012
, “
Cost-Sensitive Classification With Inadequate Labeled Data
,”
Inf. Syst.
,
37
(
5
), pp.
508
516
.10.1016/j.is.2011.10.009
20.
Das
,
S.
,
Mohamed Sajeer
,
M.
,
Chakraborty
,
A.
, and
Sarkar
,
S.
,
2021
, “
Shape Memory Alloy-Based Centrifugal Stiffening for Response Reduction of Horizontal Axis Wind Turbine Blade
,”
Struct. Control Heal. Monit.
,
28
(
3
), pp.
1
19
.10.1002/stc.2669
21.
Rezaee
,
M.
, and
Aly
,
A. M.
,
2018
, “
Vibration Control in Wind Turbines to Achieve Desired System-Level Performance Under Single and Multiple Hazard Loadings
,”
Struct. Control Heal. Monit.
,
25
(
12
), pp.
1
31
.10.1002/stc.2261
22.
Gontijo
,
G.
,
Tricarico
,
T.
,
Krejci
,
D.
,
Franca
,
B.
, and
Aredes
,
M.
,
2017
, “
A Novel Stator Voltage Distortion and Unbalance Compensation of a DFIG With Series Grid Side Converter Using Adaptive Resonant Controllers
,”
Brazilian Power Electronics Conference
, IEEE, Juiz de Fora, Brazil, Nov. 19–22, pp.
1
6
.10.1109/COBEP.2017.8257280
23.
Kandukuri
,
S. T.
,
Senanyaka
,
J. S. L.
,
Huynh
,
V. K.
, and
Robbersmyr
,
K. G.
,
2019
, “
A Two-Stage Fault Detection and Classification Scheme for Electrical Pitch Drives in Offshore Wind Farms Using Support Vector Machine
,”
IEEE Trans. Ind. Appl.
,
55
(
5
), pp.
5109
5118
.10.1109/TIA.2019.2924866
24.
Franchi
,
C. M.
, Ekwaro-Osire, S.,
Pinheiro
,
H.
, Dabetwar, S., Dias, J. P.,
Rosa
,
L. D.
, de Souza, C. E.,
Hubner
,
G. R.
, and Pereira, T. P., 2019, “
A Deep Learning Algorithm for Fault Imbalance Diagnostics in Wind Turbine Rotors Using Electrical Generator Signals
,”
Wind Energy Science Conference
, Cork, Ireland, June 17–19.10.5281/zenodo.3361760
25.
Utkin
, V.
I.
,
1993
, “
Sliding Mode Control Design Principles and Applications to Electric Drives
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
23
36
.10.1109/41.184818
26.
Koch
,
G.
,
Gabbi
,
T.
,
Henz
,
G.
,
Vieira
,
R. P.
, and
Pinheiro
,
H.
,
2015
, “
Sensorless Technique Applied to PMSG of WECS Using Sliding Mode Observer
,”
Brazilian Power Electronics Conference and Southern Power Electronics Conference
, Fortaleza, Brazil, Nov. 29–Dec. 2, pp.
1
6
.10.1109/COBEP.2015.7420141
27.
Volpato Filho
,
C. J.
, and
Vieira
,
R. P.
,
2020
, “
Pole Placement Design Methodology of Back-EMF Adaptive Observer for Sensorless PMSM Drives
,”
J. Control. Autom. Electr. Syst.
,
31
(
1
), pp.
84
93
.10.1007/s40313-019-00539-x
28.
Tang
,
Z.
,
Chen
,
Z.
,
Bao
,
Y.
, and
Li
,
H.
,
2019
, “
Convolutional Neural Network-Based Data Anomaly Detection Method Using Multiple Information for Structural Health Monitoring
,”
Struct. Control Heal. Monit.
,
26
(
1
), pp.
1
22
.10.1002/stc.2296
29.
Fan
,
G.
,
Li
,
J.
, and
Hao
,
H.
,
2019
, “
Lost Data Recovery for Structural Health Monitoring Based on Convolutional Neural Networks
,”
Struct. Control Heal. Monit.
,
26
(
10
), pp.
1
21
.10.1002/stc.2433
30.
Lyathakula
,
K. R.
, and
Yuan
,
F.-G.
,
2021
, “
A Probabilistic Fatigue Life Prediction for Adhesively Bonded Joints Via ANNs-Based Hybrid Model
,”
Int. J. Fatigue
,
151
, p.
106352
.10.1016/j.ijfatigue.2021.106352
31.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Detection of Composite Materials Using Data Fusion With Deep Neural Networks
,”
Turbomachinery Technical Conference and Exposition
, Virtual Conference, Sept. 21–25, p. V10BT27A019.10.1115/GT2020-15097
32.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2022
, “
Fatigue Damage Diagnostics of Composites Using Data Fusion and Data Augmentation With Deep Neural Networks
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
2
), p.
021004
.10.1115/1.4051947
33.
Panwar
,
S.
, and
Malwadkar
,
S.
,
2015
, “
A Review: Image Fusion Techniques for Multisensor Images
,”
Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
,
4
(
1
), pp.
406
410
.10.15662/ijareeie.2015.0401049
34.
Ross
,
A.
, and
Jain
,
A.
,
2003
, “
Information Fusion in Biometrics
,”
Pattern Recognit. Lett.
,
24
(
13
), pp.
2115
2125
.10.1016/S0167-8655(03)00079-5
35.
Bharathi
,
S.
, and
Sudhakar
,
R.
,
2019
, “
Biometric Recognition Using Finger and Palm Vein Images
,”
Soft Comput.
,
23
(
6
), pp.
1843
1855
.10.1007/s00500-018-3295-6
36.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
7
(
1
), p.
011002
.10.1115/1.4048867
37.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2019
, “
Damage Classification of Composites Using Machine Learning
,”
International Mechanical Engineering Congress and Exposition
, Salt Lake City, UT, Nov. 11–14, p. V013T13A017.10.1115/IMECE2019-11851
38.
Wang
,
J.
,
Zhuang
,
J.
,
Duan
,
L.
, and
Cheng
,
W.
,
2016
, “
A Multi-Scale Convolution Neural Network for Featureless Fault Diagnosis
,”
Proceedings of International Symposium on Flexible Automation
, Cleveland, OH, Aug. 1–3, pp.
65
70
.10.1109/ISFA.2016.7790137
39.
Cao
,
P.
,
Zhang
,
S.
, and
Tang
,
J.
,
2018
, “
Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning
,”
IEEE Access
,
6
, pp.
26241
26253
.10.1109/ACCESS.2018.2837621
40.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning With Simulated Data
,”
IEEE International Conference on Prognostics and Health Management
, San Francisco, CA, June 17–20, pp.
1
8
.10.1109/ICPHM.2019.8819423
41.
Singh
,
M.
,
Singh
,
R.
, and
Ross
,
A.
,
2019
, “
A Comprehensive Overview of Biometric Fusion
,”
Inf. Fusion
,
52
, pp.
187
205
.10.1016/j.inffus.2018.12.003
42.
Bendjenna
,
H.
,
Meraoumia
,
A.
, and
Chergui
,
O.
,
2018
, “
Pattern Recognition System: From Classical Methods to Deep Learning Techniques
,”
J. Electron. Imaging
,
27
(
03
), p.
1
.10.1117/1.JEI.27.3.033008
43.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J. Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.10.1016/j.ress.2017.11.021
44.
Solano
,
M. A.
,
Ekwaro-Osire
,
S.
, and
Tanik
,
M. M.
,
2012
, “
High-Level Fusion for Intelligence Applications Using Recombinant Cognition Synthesis
,”
Inf. Fusion
,
13
(
1
), pp.
79
98
.10.1016/j.inffus.2010.08.002
45.
Oh
,
B. K.
,
Lee
,
S. H.
, and
Park
,
H. S.
,
2020
, “
Damage Localization Method for Building Structures Based on the Interrelation of Dynamic Displacement Measurements Using Convolutional Neural Network
,”
Struct. Control Heal. Monit.
,
27
(
8
), pp.
1
16
.10.1002/stc.2578
46.
Modarres
,
C.
,
Astorga
,
N.
,
Droguett
,
E. L.
, and
Meruane
,
V.
,
2018
, “
Convolutional Neural Networks for Automated Damage Recognition and Damage Type Identification
,”
Struct. Control Heal. Monit.
,
25
(
10
), p. e2230.10.1002/stc.2230
47.
Lv
,
J. J.
,
Cheng
,
C.
,
Tian
,
G. D.
,
Zhou
,
X. D.
, and
Zhou
,
X.
,
2016
, “
Landmark Perturbation-Based Data Augmentation for Unconstrained Face Recognition
,”
Signal Process, Image Commun.
,
47
, pp.
465
475
.10.1016/j.image.2016.03.011
48.
Yang
,
B.
,
Liu
,
R.
, and
Zio
,
E.
,
2019
, “
Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9521
9530
.10.1109/TIE.2019.2924605
49.
Zhao
,
C.
,
Shuai
,
R.
,
Ma
,
L.
,
Liu
,
W.
,
Hu
,
D.
, and
Wu
,
M.
,
2021
, “
Dermoscopy Image Classification Based on StyleGAN and DenseNet201
,”
IEEE Access
,
9
, pp.
8659
8679
.10.1109/ACCESS.2021.3049600
50.
Tang
,
S.
, and
Chen
,
Z. Q.
,
2020
, “
Scale–Space Data Augmentation for Deep Transfer Learning of Crack Damage From Small Sized Datasets
,”
J. Nondestruct. Eval.
,
39
(
3
), pp.
1
18
.10.1007/s10921-020-00715-z
51.
Song
,
X.
,
Cong
,
Y.
,
Song
,
Y.
,
Chen
,
Y.
, and
Liang
,
P.
,
2021
, “
A Bearing Fault Diagnosis Model Based on CNN With Wide Convolution Kernels
,”
J. Ambient Intell. Humaniz. Comput
.10.1007/s12652-021-03177-x
52.
Sateesh Babu
,
G.
,
Zhao
,
P.
, and
Li
,
X.-L.
,
2016
, “
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
,”
Database Systems for Advanced Applications
,
S. B.
Navathe
,
W.
Wu
,
S.
Shekhar
,
X.
Du
,
X. S.
Wang
, and
H.
Xiong
, eds.,
Springer International Publishing
,
Cham
, pp.
214
228
.
53.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
Golden, CO
.
54.
Jonkman
,
B. J.
, and
Buhl, Jr.
,
M. L.
,
2006
,
TurbSim User's Guide
,
National Renewable Energy Lab
,
Golden, CO
.
55.
Walatka
,
P. P.
,
Clucas
,
J.
,
McCabe
,
R. K.
,
Plessel
,
T.
,
Potter
,
R.
, and
Cooper
,
D. M.
,
1994
, FAST User Guide, Vol. 36, National Renewable Energy Laboratory, Golden, CO, p.
366
.
56.
Dykes
,
K. L.
, and
Rinker
,
J.
,
2018
,
Windpact Reference Wind Turbines
,
National Renewable Energy Laboratory
,
Golden, CO
.
57.
Malik
,
H.
, and
Mishra
,
S.
,
2015
, “
Application of Probabilistic Neural Network in Fault Diagnosis of Wind Turbine Using FAST, TurbSim and Simulink
,”
Procedia Comput. Sci.
,
58
, pp.
186
193
.10.1016/j.procs.2015.08.052
58.
Huang
,
S.-G.
,
Chung
,
M. K.
, and
Qiu
,
A.
,
2021
, “
Fast Mesh Data Augmentation Via Chebyshev Polynomial of Spectral Filtering
,”
Neural Networks
,
143
, pp.
198
208
.10.1016/j.neunet.2021.05.025
59.
Li
,
R.
,
Johansen
,
J. S.
,
Ahmed
,
H.
,
Ilyevsky
,
T. V.
,
Wilbur
,
R. B.
,
Bharadwaj
,
H. M.
, and
Siskind
,
J. M.
,
2020
, “
The Perils and Pitfalls of Block Design for EEG Classification Experiments
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
, pp.
1
333
.10.1109/TPAMI.2020.2973153
60.
Humayun
,
A. I.
,
Ghaffarzadegan
,
S.
,
Feng
,
Z.
, and
Hasan
,
T.
,
2018
, “
Learning Front-End Filter-Bank Parameters Using Convolutional Neural Networks for Abnormal Heart Sound Detection
,”
Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Honolulu, HI, July 17–22, pp.
1408
1411
.10.1109/EMBC.2018.8512578
61.
Suematsu
,
N.
,
2018
, “
Direct Digital RF Technology-Challenges for Beyond Nyquist Frequency Range
,”
IEEE International Symposium on Radio-Frequency Integration Technology
, Melbourne, Australia, Aug. 15–17, pp.
1
3
.10.1109/RFIT.2018.8524086
62.
Lazo
,
Y. N.
, and
Tutygin
,
V. S.
,
2019
, “
Digital Method for Determining the Initial Phase of a Harmonic Signal at a Sampling Frequency Less Than the Nyquist Frequency
,”
Meas. Tech.
,
62
(
7
), pp.
636
640
.10.1007/s11018-019-01671-5
63.
Li
,
J.
,
Li
,
M.
,
Yao
,
X.
, and
Wang
,
H.
,
2018
, “
An Adaptive Randomized Orthogonal Matching Pursuit Algorithm With Sliding Window for Rolling Bearing Fault Diagnosis
,”
IEEE Access
,
6
, pp.
41107
41117
.10.1109/ACCESS.2018.2855732
64.
Fawaz
,
H. I.
,
Forestier
,
G.
,
Weber
,
J.
,
Idoumghar
,
L.
, and
Muller
,
P.-A.
,
2019
, “
Deep Learning for Time Series Classification: A Review
,”
Data Min. Knowl. Discov.
,
33
(
4
), pp.
917
963
.10.1007/s10618-019-00619-1
65.
Damaševičius
,
R.
,
Maskeliūnas
,
R.
,
Woźniak
,
M.
, and
Połap
,
D.
,
2018
, “
Visualization of Physiologic Signals Based on Hjorth Parameters and Gramian Angular Fields
,” IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (
SAMI
), IEEE, Kosice and Herlany, Slovakia, Feb. 7–10, pp.
91
96
.10.1109/SAMI.2018.8323992
66.
Wang
,
Z.
, and
Oates
,
T.
,
2015
, “
Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks
,”
AAAI Workshop
, Austin, TX, Jan. 25–26, pp.
40
46
.https://www.researchgate.net/publication/275970614_Encoding_Time_Series_as_Images_for_Visual_Inspection_and_Classification_Using_Tiled_Convolutional_Neural_Networks
67.
Wang
,
Z.
, and
Oates
,
T.
,
2015
, “
Imaging Time-Series to Improve Classification and Imputation
,” Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (
IJCAI
), IJCAI, Buenos Aires, Argentina, July 25–31, pp.
3939
3945
.https://www.ijcai.org/Proceedings/15/Papers/553.pdf
68.
Chen
,
J.-H.
, and
Tsai
,
Y.-C.
,
2020
, “
Encoding Candlesticks as Images for Patterns Classification Using Convolutional Neural Networks
,”
Financ. Innov.
,
6
(
1
), pp.
1
19
.10.1186/s40854-020-00187-0
You do not currently have access to this content.