Abstract

The purpose of this work is to enable the use of the Dempster–Shafer evidence theory (ET) for uncertainty propagation on computationally expensive automotive crash simulations. This is necessary as the results of these simulations are influenced by multiple possibly uncertain aspects. To avoid negative effects, it is important to detect these factors and their consequences. The challenge when pursuing this effort is the prohibitively high computational cost of the ET. To this end, we present a framework of existing methods that is specifically designed to reduce the necessary number of full model evaluations and parameters. An initial screening removes clearly irrelevant parameters to mitigate the curse of dimensionality. Next, we approximate the full-scale simulation using metamodels to accelerate output generation and thus enable the calculation of global sensitivity indices. These indicate effects of the parameters on the considered output and more profoundly sort out irrelevant parameters. After these steps, the ET can be performed rapidly and feasibly due to fast-responding metamodel and reduced input dimension. It yields bounds for the cumulative distribution function of the considered quantity of interest. We apply the proposed framework to a simplified crash test dummy model. The elementary effects method is used for screening, a kriging metamodel emulates the finite element simulation, and Sobol' sensitivity indices are determined before the ET is applied. The outcome of the framework provides engineers with information about the uncertainties they may face in hardware testing and that should be addressed in future vehicle design.

References

1.
Duddeck
,
F.
, and
Wehrle
,
E.
,
2015
, “
Recent Advances on Surrogate Modeling for Robustness Assessment of Structures With Respect to Crashworthiness Requirements
,”
Tenth European LS-DYNA Conference
, Würzburg, Deutschland, June.
2.
Lange
,
V. A.
,
Fender
,
J.
,
Song
,
L.
, and
Duddeck
,
F.
,
2018
, “
Early Phase Modeling of Frontal Impacts for Crashworthiness: From Lumped Mass-Spring Models to Deformation Space Models
,”
Proc. Inst. Mech. Eng., Part D
,
233
(
12
), pp.
3000
3015
.10.1177/0954407018814034
3.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “
A Review on Global Sensitivity Analysis Methods
,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
G.
Dellino
and
C.
Meloni
, eds.,
Springer
,
New York
, pp.
101
122
.
4.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
, Vol.
1
,
Wiley
,
Chichester, UK
.
5.
Campolongo
,
F.
,
Saltelli
,
A.
, and
Cariboni
,
J.
,
2011
, “
From Screening to Quantitative Sensitivity Analysis. A Unified Approach
,”
Comput. Phys. Commun.
,
182
, pp.
978
988
.10.1016/j.cpc.2010.12.039
6.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
, pp.
161
174
.10.1080/00401706.1991.10484804
7.
Wang
,
Y.
, and
Swiler
,
L.
,
2018
, “
Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
4
(
1
), p.
010301
.10.1115/1.4037447
8.
Tran
,
A.
,
He
,
L.
, and
Wang
,
Y.
,
2018
, “
An Efficient First-Principles Saddle Point Searching Method Based on Distributed Kriging Metamodels
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
4
(
1
), p.
011006
.10.1115/1.4037459
9.
Faes
,
M.
,
Sadeghi
,
J.
,
Broggi
,
M.
,
De Angelis
,
M.
,
Patelli
,
E.
,
Beer
,
M.
, and
Moens
,
D.
,
2019
, “
On the Robust Estimation of Small Failure Probabilities for Strong Nonlinear Models
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
4
), p.
041007
.10.1115/1.4044044
10.
Faes
,
M.
,
Moens
,
D.
,
Beer
,
M.
,
Zhang
,
H.
, and
Phoon
,
K.-K.
,
2021
, “
Nonprobabilistic and Hybrid Approaches for Uncertainty Quantification and Reliability Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
020301
.10.1115/1.4050256
11.
Fang
,
Y.
,
Zhan
,
Z.
,
Yang
,
J.
, and
Liu
,
X.
,
2017
, “
A Mixed-Kernel-Based Support Vector Regression Model for Automotive Body Design Optimization Under Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
4
), p.
041008
.10.1115/1.4036990
12.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1014
1020
.10.1115/1.1906264
13.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York
.
14.
Chen
,
B.
,
Shen
,
L.
, and
Zhang
,
H.
,
2021
, “
Gaussian Process Regression-Based Material Model for Stochastic Structural Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
7
(
3
), p.
04021025
.10.1061/AJRUA6.0001138
15.
Micheli
,
L.
, and
Laflamme
,
S.
,
2020
, “
Kriging-Based Design for Robust High-Performance Control Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
6
(
4
), p.
04020037
.10.1061/AJRUA6.0001085
16.
Moustapha
,
M.
,
Sudret
,
B.
,
Bourinet
,
J.-M.
, and
Guillaume
,
B.
,
2014
, “
Metamodeling for Crashworthiness Design: Comparative Study of Kriging and Support Vector Regression
,”
Proceedings of the Second International Symposium on Uncertainty Quantification and Stochastic Modeling
, Rouen, France, Nov.
17.
Moustapha
,
M.
,
Sudret
,
B.
,
Bourinet
,
J.-M.
, and
Guillaume
,
B.
,
2015
, “
Adaptive Kriging Reliability-Based Design Optimization of an Automotive Body Structure Under Crashworthiness Constraints
,”
Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering
(
ICASP12
), Vancouver, BC, Canada, July
12
15
.https://www.researchgate.net/publication/282247356_Adaptive_Kriging_reliabilitybased_design_optimization_of_an_automotive_body_structure_under_crashworthiness_constraints
18.
Moustapha
,
M.
,
Bourinet
,
J.-M.
,
Guillaume
,
B.
, and
Sudret
,
B.
,
2018
, “
Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
4
(
2
), p. 04018005.10.1061/AJRUA6.0000950
19.
Qian
,
G.
,
Massenzio
,
M.
,
Brizard
,
D.
, and
Ichchou
,
M.
,
2019
, “
Sensitivity Analysis of Complex Engineering Systems: Approaches Study and Their Application to Vehicle Restraint System Crash Simulation
,”
Reliab. Eng. Syst. Saf.
,
187
, pp.
110
118
.10.1016/j.ress.2018.07.027
20.
Borchani
,
H.
,
Varando
,
G.
,
Bielza
,
C.
, and
Larrañaga
,
P.
,
2015
, “
A Survey on Multi-Output Regression
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
,
5
(
5
), pp.
216
233
.10.1002/widm.1157
21.
Guo
,
M.
, and
Hesthaven
,
J. S.
,
2018
, “
Reduced Order Modeling for Nonlinear Structural Analysis Using Gaussian Process Regression
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
807
826
.10.1016/j.cma.2018.07.017
22.
Guo
,
M.
, and
Hesthaven
,
J. S.
,
2019
, “
Data-Driven Reduced Order Modeling for Time-Dependent Problems
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
75
99
.10.1016/j.cma.2018.10.029
23.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
24.
Spiridonakos
,
M. D.
,
Chatzi
,
E. N.
, and
Sudret
,
B.
,
2016
, “
Polynomial Chaos Expansion Models for the Monitoring of Structures Under Operational Variability
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
2
(
3
), p.
B4016003
.10.1061/AJRUA6.0000872
25.
de Santana Gomes
,
W. J.
,
2020
, “
Shallow and Deep Artificial Neural Networks for Structural Reliability Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
4
), p.
041006
.10.1115/1.4047636
26.
de Santana Gomes
,
W. J.
,
2019
, “
Structural Reliability Analysis Using Adaptive Artificial Neural Networks
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
4
), p.
041004
.10.1115/1.4044040
27.
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2021
, “
Dynamic Response Analysis of Gearbox to Improve Fault Detection Using Empirical Mode Decomposition and Artificial Neural Network Techniques
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
3
), p.
031007
.10.1115/1.4051344
28.
Donoho
,
D. L.
,
2000
, “
High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,”
AMS Math Challenges Lect.
,
1
, p.
32
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.3392
29.
Lataniotis
,
C.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2020
, “
Extending Classical Surrogate Modeling to High Dimensions Through Supervised Dimensionality Reduction: A Data-Driven Approach
,”
Int. J. Uncertainty Quantif.
,
10
(
1
), pp.
55
82
.10.1615/Int.J.UncertaintyQuantification.2020031935
30.
Blatman
,
G.
, and
Sudret
,
B.
,
2008
, “
Sparse Polynomial Chaos Expansions and Adaptive Stochastic Finite Elements Using a Regression Approach
,”
C. R. Méc.
,
336
(
6
), pp.
518
523
.10.1016/j.crme.2008.02.013
31.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.10.1016/j.jcp.2010.12.021
32.
Sobol'
,
I. M.
,
1993
, “
Sensitivity Analysis for Non-Linear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
, pp.
407
414
.https://ci.nii.ac.jp/naid/10027137978/
33.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
, pp.
259
270
.10.1016/j.cpc.2009.09.018
34.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
, “
Global Sensitivity Analysis
,”
The Primer
,
Wiley
,
Chichester, UK
.
35.
Swiler
,
L. P.
,
Paez
,
T. L.
, and
Mayes
,
R. L.
,
2009
, “
Epistemic Uncertainty Quantification Tutorial
,”
Proceedings of the IMAC-XXVII
, Orlando, FL, Feb., pp.
1005
1021
.
36.
Jehle
,
J. S.
,
Lange
,
V. A.
, and
Gerdts
,
M.
,
2021
, “
Enabling the Evidence Theory Through Non-Intrusive Parametric Model Order Reduction for Crash Simulations
,” Ninth International Workshop on Reliable Engineering Computing (
REC2021
), Virtual Conference, May.http://ww2new.unime.it/REC2021/papers/REC2021-05.pdf
37.
Helton
,
J. C.
,
Brooks
,
D. M.
, and
Darby
,
J. L.
,
2021
, “
Evidence Theory Representations for Properties Associated With Weak Link/Strong Link Systems, Part 1: Loss of Assured Safety
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
020914
.10.1115/1.4050582
38.
Helton
,
J. C.
,
Brooks
,
D. M.
, and
Darby
,
J. L.
,
2021
, “
Evidence Theory Representations for Properties Associated With Weak Link/Strong Link Systems, Part 2: Failure Time and Failure Temperature
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
020915
.10.1115/1.4050584
39.
Helton
,
J. C.
,
Brooks
,
D. M.
, and
Darby
,
J. L.
,
2021
, “
Evidence Theory Representations for Properties Associated With Weak Link/Strong Link Systems, Part 3: Margins for Failure Time and Failure Temperature
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
020916
.10.1115/1.4050585
40.
Dassault Systèmes
,
2016
, “
Abaqus Version 2016
,”
Dassault Systèmes
,
Vélizy-Villacoublay, Île-de-France
.
41.
The MathWorks Inc.
,
2018
, “
MATLAB Version 9.5.0.944444 (R2018b)
,”
The MathWorks
,
Natick, MA
.
42.
Iooss
,
B.
, and
Saltelli
,
A.
,
2017
, “
Introduction to Sensitivity Analysis
,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer
,
Cham, Switzerland
, pp.
1103
1122
.
43.
Campolongo
,
F.
,
Cariboni
,
J.
,
Saltelli
,
A.
, and
Schoutens
,
W.
,
2005
, “
Enhancing the Morris Method
,” Proceedings of the Fourth International Conference on Sensitivity Analysis of Model Output (
SAMO 2004
), Santa Fe, NM, Mar., pp.
369
379
.https://publications.jrc.ec.europa.eu/repository/handle/JRC31319
44.
Saltelli
,
A.
,
1999
, “
Sensitivity Analysis: Could Better Methods Be Used?
,”
J. Geophys. Res.: Atmos.
,
104
(
D3
), pp.
3789
3793
.10.1029/1998JD100042
45.
Confalonieri
,
R.
,
Bellocchi
,
G.
,
Tarantola
,
S.
,
Acutis
,
M.
,
Donatelli
,
M.
, and
Genovese
,
G.
,
2010
, “
Sensitivity Analysis of the Rice Model Warm in Europe: Exploring the Effects of Different Locations, Climates and Methods of Analysis on Model Sensitivity to Crop Parameters
,”
Environ. Modell. Software
,
25
(
4
), pp.
479
488
.10.1016/j.envsoft.2009.10.005
46.
Ruano
,
M.
,
Ribes
,
J.
,
Seco
,
A.
, and
Ferrer
,
J.
,
2012
, “
An Improved Sampling Strategy Based on Trajectory Design for Application of the Morris Method to Systems With Many Input Factors
,”
Environ. Modell. Software
,
37
, pp.
103
109
.10.1016/j.envsoft.2012.03.008
47.
Campolongo
,
F.
,
Cariboni
,
J.
, and
Saltelli
,
A.
,
2007
, “
An Effective Screening Design for Sensitivity Analysis of Large Models
,”
Environ. Modell. Software
,
22
, pp.
1509
1518
.10.1016/j.envsoft.2006.10.004
48.
Sobol'
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
, pp.
271
280
.10.1016/S0378-4754(00)00270-6
49.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.10.1016/0951-8320(96)00002-6
50.
Jansen
,
M. J. W.
,
1996
, “
Analysis of Variance Designs for Model Output
,”
Comput. Phys. Commun.
,
117
, pp.
35
43
.10.1016/S0010-4655(98)00154-4
51.
Marrel
,
A.
,
Iooss
,
B.
,
Laurent
,
B.
, and
Roustant
,
O.
,
2009
, “
Calculation of Sobol Indices for the Gaussian Process Metamodel
,”
Reliab. Eng. Syst. Saf.
,
94
(
3
), pp.
742
751
.10.1016/j.ress.2008.07.008
52.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
964
979
.10.1016/j.ress.2007.04.002
53.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
54.
Paciorek
,
C. J.
, and
Schervish
,
M. J.
,
2004
, “
Nonstationary Covariance Functions for Gaussian Process Regression
,”
Advances in Neural Information Processing Systems 16
, MIT Press, Vancouver, BC, Canada, pp.
273
280
.
55.
Joseph
,
V. R.
,
2006
, “
Limit Kriging
,”
Technometrics
,
48
(
4
), pp.
458
466
.10.1198/004017006000000011
56.
Schöbi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertainty Quantif.
,
5
(
2
), pp.
171
193
.10.1615/Int.J.UncertaintyQuantification.2015012467
57.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2016
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
3
(
2
), p. D4016002.10.1061/AJRUA6.0000870
58.
Ulaganathan
,
S.
,
Couckuyt
,
I.
,
Dhaene
,
T.
,
Degroote
,
J.
, and
Laermans
,
E.
,
2016
, “
Performance Study of Gradient Enhanced Kriging
,”
Eng. Comput.
,
32
(
1
), pp.
15
34
.10.1007/s00366-015-0397-y
59.
Bouhlel
,
M. A.
,
Bartoli
,
N.
,
Otsmane
,
A.
, and
Morlier
,
J.
,
2016
, “
Improving Kriging Surrogates of High-Dimensional Design Models by Partial Least Squares Dimension Reduction
,”
Struct. Multidiscip. Optim.
,
53
(
5
), pp.
935
952
.10.1007/s00158-015-1395-9
60.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
61.
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
, and
Singhal
,
S.
,
2004
,
Engineering Design Reliability Handbook
,
CRC Press
, Boca Raton, FL.
62.
Eldred
,
M. S.
, and
Swiler
,
L. P.
,
2009
, “
Efficient Algorithms for Mixed Aleatory-Epistemic Uncertainty Quantification With Application to Radiation-Hardened Electronics. Part I: Algorithms and Benchmark Results
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2009-5805.
63.
Auer
,
E.
,
Luther
,
W.
,
Rebner
,
G.
, and
Limbourg
,
P.
,
2010
, “
A Verified Matlab Toolbox for the Dempster-Shafer Theory
,”
Workshop on the Theory of Belief Functions
, Brest, France, Apr.
64.
Sentz
,
K.
, and
Ferson
,
S.
,
2002
, “
Combination of Evidence in Dempster-Shafer Theory
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2002-0835.
65.
Abaqus,
2012
, “
WorldSID50 Crash Test Dummy Model Version 3.1-1
,” Dassault Systèmes, Vélizy-Villacoublay, France, accessed Feb. 13, 2020, https://www.3ds.com/products-services/simulia/products/abaqus/add-ons/crash-dummy-barrier-models/
66.
Scheidacker
,
G.
, and
Brams
,
S.
,
2019
, “
Internal Technical Report: Simplified Model for the WorldSID50 Dummy Model
,” Total Vehicle Department, BMW Group, Technical Report No. 1.
67.
Brams
,
S.
,
2017
, “
Entwicklung eines Dummy-Ersatzmodells zur Lösungsraumidentifikation und Optimierung der Rückhaltesysteme im Seitencrash
,” MS thesis,
Technische Hochschule Ingolstadt
,
Ingolstadt, Germany
.
68.
Elisseeff
,
A.
, and
Pontil
,
M.
,
2003
, “
Leave-One-Out Error and Stability of Learning Algorithms With Applications
,”
NATO Sci. Ser., Sub Ser. III
,
190
, pp.
111
130
.https://www.researchgate.net/publication/228597518_Leave-oneout_error_and_stability_of_learning_algorithms_with_applications_Stability_of_Randomized_Learning_Algorithms_Source
69.
Fahrmeir
,
L.
,
Heumann
,
C.
,
Künstler
,
R.
,
Pigeot
,
I.
, and
Tutz
,
G.
,
2016
,
Statistik: Der Weg zur Datenanalyse
,
Springer
, Heidelberg, Germany.
70.
Saisana
,
M.
,
Saltelli
,
A.
, and
Tarantola
,
S.
,
2005
, “
Uncertainty and Sensitivity Analysis Techniques as Tools for the Quality Assessment of Composite Indicators
,”
J. R. Stat. Soc.: Ser. A (Stat. Soc.)
,
168
(
2
), pp.
307
323
.10.1111/j.1467-985X.2005.00350.x
71.
Nossent
,
J.
,
Elsen
,
P.
, and
Bauwens
,
W.
,
2011
, “
Sobol' Sensitivity Analysis of a Complex Environmental Model
,”
Environ. Modell. Software
,
26
(
12
), pp.
1515
1525
.10.1016/j.envsoft.2011.08.010
72.
Hasan
,
K. N.
,
Preece
,
R.
, and
Milanović
,
J. V.
,
2016
, “
Priority Ranking of Critical Uncertainties Affecting Small-Disturbance Stability Using Sensitivity Analysis Techniques
,”
IEEE Trans. Power Syst.
,
32
(
4
), pp.
2629
2639
.10.1109/TPWRS.2016.2618347
73.
Song
,
J.
,
Wei
,
P.
,
Valdebenito
,
M. A.
,
Faes
,
M.
, and
Beer
,
M.
,
2022
, “
Data-Driven and Active Learning of Variance-Based Sensitivity Indices With Bayesian Probabilistic Integration
,”
Mech. Syst. Signal Process.
,
163
, p.
108106
.10.1016/j.ymssp.2021.108106
74.
Lewandowski
,
D.
,
Cooke
,
R. M.
, and
Tebbens
,
R. J. D.
,
2007
, “
Sample-Based Estimation of Correlation Ratio With Polynomial Approximation
,”
ACM Trans. Model. Comput. Simul. (TOMACS)
,
18
(
1
), pp.
1
17
.10.1145/1315575.1315578
75.
Bogoclu
,
C.
, and
Roos
,
D.
,
2016
, “
A Benchmark of Contemporary Metamodeling Algorithms
,” VII European Congress on Computational Methods in Applied Sciences and Engineering (
ECCOMAS
) Congress, Vol.
2
, Crete Island, Greece, June, pp.
3344
3360
.10.7712/100016.2039.7645
76.
Constantine
,
P. G.
,
Dow
,
E.
, and
Wang
,
Q.
,
2014
, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1500
A1524
.10.1137/130916138
You do not currently have access to this content.