Abstract

Cyber-physical systems are engineered systems that rely on the integration of physical processes and computational resources. While this integration enables advanced techniques for monitoring and controlling systems, it also exposes the physical process to cyber-threats. An attacker who is able to access control inputs and mask measurements could damage the system while remaining undetected. By masking certain measurement signals, an attacker may be able to render a portion of the state space unobservable, meaning that it is impossible to estimate or infer the value of those states. This is called an observability attack. A game-theoretic approach is presented to analyze observability attacks. The attacker's strategy set includes all possible combinations of masked measurements. The defender's strategy set includes all possible combinations of measurement reinforcements. The attacker's and defender's utilities are quantified using the responses of the observable and unobservable states. The observability attack game is analyzed for a nuclear balance of plant system. Multiple pure-strategy and mixed-strategy Nash equilibria are identified, and the conditions for their existence are presented. Using this procedure, a security and control engineer can select the optimal strategy to defend a cyber-physical system from observability attacks.

References

1.
Lee
,
E. A.
,
2008
, “
Cyber Physical Systems: Design Challenges
,”
11th IEEE Symposium on Object Oriented Real-Time Distributed Computing
(
ISORC
), Orlando, FL, May 5–7, pp.
363
369
.10.1109/ISORC.2008.25
2.
Loukas
,
G.
,
2015
,
Cyber-Physical Attacks: A Growing Invisible Threat
,
Elsevier
,
Waltham, MA
.
3.
Falliere
,
N.
,
Murchu
,
L. O.
, and
Chien
,
E.
,
2011
, “
W32.Stuxnet Dossier
, Version 1.4,” Symantec Security Response, Cupertino, CA, Report.
4.
Karnouskos
,
S.
,
2011
, “
Stuxnet Worm Impact on Industrial Cyber-Physical System Security
,”
IECON Proceedings—Industrial Electronics Conference
, Melbourne, Australia, Nov. 7–10, pp.
4490
4494
.10.1109/IECON.2011.6120048
5.
Fidler
,
D. P.
,
2011
, “
Was Stuxnet an Act of War? Decoding a Cyberattack
,”
IEEE Secur. Privacy
,
9
(
4
), pp.
56
59
.10.1109/MSP.2011.96
6.
Greengard
,
S.
,
2010
, “
The New Face of War
,”
Commun. ACM
,
53
(
12
), p.
20
.10.1145/1859204.1859212
7.
Rios Insua
,
D.
,
Rios
,
J.
, and
Banks
,
D.
,
2009
, “
Adversarial Risk Analysis
,”
J. Am. Stat. Assoc.
,
104
(
486
), pp.
841
854
.10.1198/jasa.2009.0155
8.
Rios Insua
,
D.
,
Banks
,
D.
, and
Rios
,
J.
,
2016
, “
Modeling Opponents in Adversarial Risk Analysis
,”
Risk Anal.
,
36
(
4
), pp.
742
755
.10.1111/risa.12439
9.
Banks
,
D.
,
Rios
,
J.
, and
Insua
,
D. R.
,
2015
,
Adversarial Risk Analysis
,
CRC Press LLC
,
Boca Raton, FL
.
10.
Bier
,
V.
,
Nagaraj
,
A.
, and
Abhichandani
,
V.
,
2005
, “
Protection of Simple Series and Parallel Systems With Components of Different Values
,”
Reliab. Eng. Syst. Saf.
,
87
(
3
), pp.
315
323
.10.1016/j.ress.2004.06.003
11.
Azaiez
,
N.
, and
Bier
,
V.
,
2007
, “
Optimal Resource Allocation for Security in Reliability Systems
,”
Eur. J. Oper. Res.
,
181
(
2
), pp.
773
786
.10.1016/j.ejor.2006.03.057
12.
Orojloo
,
H.
, and
Azgomi
,
M. A.
,
2017
, “
A Game-Theoretic Approach to Model and Quantify the Security of Cyber-Physical Systems
,”
Comput. Ind.
,
88
, pp.
44
57
.10.1016/j.compind.2017.03.007
13.
Orojloo
,
H.
, and
Azgomi
,
M. A.
,
2018
, “
A Stochastic Game Model for Evaluating the Impacts of Security Attacks Against Cyber-Physical Systems
,”
J. Network Syst. Manage.
,
26
(
4
), p.
929
.10.1007/s10922-018-9449-0
14.
Rao
,
N. S. V.
,
Ma
,
C. Y. T.
,
Shah
,
U.
,
Zhuang
,
J.
,
He
,
F.
, and
Yau
,
D. K. Y.
,
2015
, “
On Resilience of Cyber-Physical Infrastructures Using Discrete Product-Form Games
,”
18th International Conference on Information Fusion
, Washington, DC, July 6–9, pp.
1451
1458
. https://ieeexplore.ieee.org/document/7266728
15.
Rao
,
N.
,
Ma
,
C.
, and
He
,
F.
,
2018
, “
Defense Strategies for Multi-Site Cloud Computing Server Infrastructures
,”
ACM International Conference Proceeding Series
, Varanasi, India, Jan. 4–7.10.1145/3154273.3154344
16.
Rao
,
N.
,
Ma
,
C.
,
Hausken
,
K.
,
He
,
F.
,
Yau
,
D.
, and
Zhuang
,
J.
,
2018
, “
Defense Strategies for Asymmetric Networked Systems With Discrete Components
,”
Sensors
,
18
(
5
), p.
1421
.10.3390/s18051421
17.
Chen
,
C.-T.
,
1998
,
Linear System Theory and Design
, 3rd ed.,
The Oxford University Press
,
Oxford, UK
.
18.
Golub
,
G.
, and
Loan
,
C. V.
,
1996
,
Matrix Computations
, 3rd ed.,
The Johns Hopkins University Press
,
Baltimore, MD
.
19.
Boley
,
D.
,
1984
, “
Technical Notes and Correspondence Computing the Kalman Decomposition: An Optimal Method
,”
IEEE Trans. Autom. Control
,
29
(
1
), pp.
51
53
.10.1109/TAC.1984.1103365
20.
Maccarone
,
L. T.
,
D'Angelo
,
C. J.
, and
Cole
,
D. G.
,
2018
, “
Uncovering Cyber-Threats to Nuclear System Sensing and Observability
,”
Nucl. Eng. Des.
,
331
, pp.
204
210
.10.1016/j.nucengdes.2018.02.028
21.
The Nuclear Regulatory Commission
,
1983
, “
PRA Procedures Guide
,” The U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-2300.
22.
Dutta
,
P. K.
,
1999
,
Strategies and Games: Theory and Practice
,
The MIT Press
, Cambridge, MA.
23.
Fudenberg
,
D.
, and
Tirole
,
J.
,
1991
,
Game Theory
,
The MIT Press
, Cambridge, MA.
24.
Maccarone
,
L. T.
, and
Cole
,
D. G.
,
2018
, “
A Game-Theoretic Approach to Defending Nuclear Instrumentation and Control Systems From Cyber-Threats
,”
ASME
Paper No. IMECE2018-87713.
10.1115/IMECE2018-87713
25.
Maccarone
,
L. T.
, and
Cole
,
D. G.
,
2019
, “
A Sequential Game-Theoretic Approach to Defending Nuclear Systems From Cyber-Threats
,”
Proceedings of 11th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC and HMIT)
, Orlando, FL, pp.
387
398
.
26.
Irving
,
E.
,
Miossec
,
C.
, and
Tassart
,
J.
,
1979
, “
Towards Efficient Full Automatic Operation of the PWR Steam Generator With Water Level Adaptive Control
,”
Second International Conference on Boiler Dynamics and Control in Nuclear Power Stations
, Bournemouth, UK, pp.
309
329
.https://www.icevirtuallibrary.com/doi/abs/10.1680/bdacinps2.00957.0038
27.
Ablay
,
G.
,
2016
, “
A Robust Estimator-Based Optimal Algebraic Approach to Steam Generator Feedwater Control System
,”
Turk. J. Electr. Eng. Comput. Sci.
,
24
, pp.
206
218
.10.3906/elk-1307-46
28.
Kothare
,
M. V.
,
Mettler
,
B.
,
Morari
,
M.
,
Bendotti
,
P.
, and
Falinower
,
C.
,
2000
, “
Level Control in the Steam Generator of a Nuclear Power Plant
,”
IEEE Trans. Control Syst. Technol.
,
8
(
1
), pp.
55
69
.10.1109/87.817692
29.
Kundur
,
P.
,
1994
,
Power System Stability and Control
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.