In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under different values of alpha is reported. Comparisons with pertinent Monte Carlo simulation data and analytical solutions (when available) demonstrate the accuracy of the results.
Skip Nav Destination
Article navigation
September 2017
Research-Article
Path Integral Method for Nonlinear Systems Under Levy White Noise
Alberto Di Matteo,
Alberto Di Matteo
Dipartimento di Ingegneria Civile,
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy
e-mail: alberto.dimatteo@unipa.it
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy
e-mail: alberto.dimatteo@unipa.it
Search for other works by this author on:
Antonina Pirrotta
Antonina Pirrotta
Dipartimento di Ingegneria Civile,
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy;
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy;
Department of Mathematical Sciences,
University of Liverpool,
Liverpool L69 7ZL, UK
e-mails: antonina.pirrotta@unipa.it;
Antonina.Pirrotta@liverpool.ac.uk
University of Liverpool,
Liverpool L69 7ZL, UK
e-mails: antonina.pirrotta@unipa.it;
Antonina.Pirrotta@liverpool.ac.uk
Search for other works by this author on:
Alberto Di Matteo
Dipartimento di Ingegneria Civile,
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy
e-mail: alberto.dimatteo@unipa.it
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy
e-mail: alberto.dimatteo@unipa.it
Antonina Pirrotta
Dipartimento di Ingegneria Civile,
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy;
Ambientale Aerospaziale e dei Materiali (DICAM),
Università degli Studi di Palermo,
Viale delle Scienze,
Palermo 90128, Italy;
Department of Mathematical Sciences,
University of Liverpool,
Liverpool L69 7ZL, UK
e-mails: antonina.pirrotta@unipa.it;
Antonina.Pirrotta@liverpool.ac.uk
University of Liverpool,
Liverpool L69 7ZL, UK
e-mails: antonina.pirrotta@unipa.it;
Antonina.Pirrotta@liverpool.ac.uk
Manuscript received June 22, 2016; final manuscript received September 21, 2016; published online June 12, 2017. Assoc. Editor: Ioannis Kougioumtzoglou.
ASME J. Risk Uncertainty Part B. Sep 2017, 3(3): 030905 (7 pages)
Published Online: June 12, 2017
Article history
Received:
June 22, 2016
Revised:
September 21, 2016
Citation
Di Matteo, A., and Pirrotta, A. (June 12, 2017). "Path Integral Method for Nonlinear Systems Under Levy White Noise." ASME. ASME J. Risk Uncertainty Part B. September 2017; 3(3): 030905. https://doi.org/10.1115/1.4036703
Download citation file:
Get Email Alerts
Cited By
The ASME Ayyub-Wiechel Risk Analysis Award
ASME J. Risk Uncertainty Part B (December 2024)
Uncertainty Quantification In The Prediction of Remaining Useful Life Considering Multiple Failure Modes
ASME J. Risk Uncertainty Part B
A data driven black box approach for the inverse quantification of set-theoretical uncertainty
ASME J. Risk Uncertainty Part B
Identification of crashworthy designs combining active learning and the solution space methodology
ASME J. Risk Uncertainty Part B
Related Articles
Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems
J. Comput. Nonlinear Dynam (January,2010)
Nonlinear Stochastic Dynamics, Chaos, and Reliability Analysis for a Single Degree of Freedom Model of a Rotor Blade
J. Eng. Gas Turbines Power (January,2009)
Nonlinear Oscillator Stochastic Response and Survival Probability Determination via the Wiener Path Integral
ASME J. Risk Uncertainty Part B (June,2015)
Analysis of a Nonlinear System Exhibiting Chaotic, Noisy Chaotic, and Random Behaviors
J. Appl. Mech (June,1996)
Articles from Part A: Civil Engineering
Physically Driven Exact Dimension Reduction of a Class of Nonlinear Multidimensional Systems Subjected to Additive White Noise
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (June,2022)
Analytical Nonstationary Response of Linear Stochastic MDOF Systems Endowed with Half-Order Fractional Derivative Elements
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (March,2024)
Online Noise Identification for Joint State and Parameter Estimation of Nonlinear Systems
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (September,2016)
Response Determination of Nonlinear Systems with Singular Matrices Subject to Combined Stochastic and Deterministic Excitations
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (December,2021)
Related Proceedings Papers
Related Chapters
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Model-Building for Robust Reinforcement Learning
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20
Accommodation and Stability of Alloying Elements in Amorphous Grain Boundaries of Zirconia
Zirconium in the Nuclear Industry: 20th International Symposium