The operations of a planetary rover depend critically upon the amount of power that can be delivered by its batteries. In order to plan the future operation, it is important to make reliable predictions regarding the end-of-discharge (EOD) time, which can be used to estimate the remaining driving time (RDT) and remaining driving distance (RDD). These quantities are stochastic in nature, not only because there are several sources of uncertainty that affect the rover’s operation but also since the future operating conditions cannot be known precisely. This paper presents a computational methodology to predict these stochastic quantities, based on a model of the rover and its batteries. We utilize a model-based prognostics framework that characterizes and incorporates the various sources of uncertainty into these predictions, thereby assisting operational decision-making. We consider two different types of driving scenarios and develop methods for each to characterize the associated uncertainty. Monte Carlo sampling and the inverse first-order reliability method are used to compute the stochastic predictions of EOD time, RDT, and RDD.

References

1.
Koren
,
Y.
, and
Borenstein
,
J.
,
1991
, “
Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
IEEE
,
Sacramento, CA
, pp.
1398
1404
.
2.
Brooks
,
R.
,
1986
, “
A Robust Layered Control System for a Mobile Robot
,”
IEEE J. Rob. Autom.
,
2
(
1
), pp.
14
23
. 0882-496710.1109/JRA.1986.1087032
3.
Ge
,
S. S.
, and
Cui
,
Y. J.
,
2000
, “
New Potential Functions for Mobile Robot Path Planning
,”
IEEE Trans. Rob. Autom.
,
16
(
5
), pp.
615
620
. 1042-296X10.1109/70.880813
4.
Hu
,
Y.
, and
Yang
,
S. X.
,
2004
, “
A Knowledge Based Genetic Algorithm for Path Planning of a Mobile Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol. 
5
,
IEEE
,
New Orleans, LA
, pp.
4350
4355
.
5.
Lee
,
M. K.
,
Kiesler
,
S.
,
Forlizzi
,
J.
,
Srinivasa
,
S.
, and
Rybski
,
P.
,
2010
, “
Gracefully Mitigating Breakdowns in Robotic Services
,”
Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction
,
IEEE
,
Osaka, Japan
, pp.
203
210
.
6.
Dixon
,
W.
,
Walker
,
I.
, and
Dawson
,
D.
,
2001
, “
Fault Detection for Wheeled Mobile Robots With Parametric Uncertainty
,”
2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Vol. 
2
,
IEEE
,
Como, Italy
, pp.
1245
1250
.
7.
Cesarone
,
J.
, and
Eman
,
K. F.
,
1989
, “
Mobile Robot Routing With Dynamic Programming
,”
J. Manuf. Syst.
,
8
(
4
), pp.
257
266
. 0278-612510.1016/0278-6125(89)90003-4
8.
Yuan
,
B.
,
Orlowska
,
M.
, and
Sadiq
,
S.
,
2007
, “
On the Optimal Robot Routing Problem in Wireless Sensor Networks
,”
IEEE Trans. Knowl. Data Eng.
,
19
(
9
), pp.
1252
1261
. 1041-434710.1109/TKDE.2007.1062
9.
Oliva
,
J.
,
Weihrauch
,
C.
, and
Bertram
,
T.
,
2013
, “
A Model-Based Approach for Predicting the Remaining Driving Range in Electric Vehicles
,”
Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
New Orleans, LA
, pp.
438
448
.
10.
Vichare
,
N. M.
, and
Pecht
,
M. G.
,
2006
, “
Prognostics and Health Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
222
229
.10.1109/TCAPT.2006.870387
11.
Sheppard
,
J. W.
,
Kaufman
,
M. A.
, and
Wilmer
,
T. J.
,
2009
, “
IEEE Standards for Prognostics and Health Management
,”
IEEE Aerosp. Electron. Syst. Mag.
,
24
(
9
), pp.
34
41
.10.1109/MAES.2009.5282287
12.
Byington
,
C. S.
,
Watson
,
M.
,
Edwards
,
D.
, and
Stoelting
,
P.
,
2004
, “
A Model-Based Approach to Prognostics and Health Management for Flight Control Actuators
,”
IEEE Aerospace Conference
, Vol. 
6
,
IEEE
,
Big Sky, MT
, pp.
3551
3562
.
13.
Orchard
,
M.
, and
Vachtsevanos
,
G.
,
2009
, “
A Particle Filtering Approach for On-Line Fault Diagnosis and Failure Prognosis
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
221
246
. 0142-331210.1177/0142331208092026
14.
Daigle
,
M.
, and
Goebel
,
K.
,
2013
, “
Model-Based Prognostics With Concurrent Damage Progression Processes
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
,
43
(
4
), pp.
535
546
.10.1109/TSMCA.2012.2207109
15.
Luo
,
J.
,
Pattipati
,
K. R.
,
Qiao
,
L.
, and
Chigusa
,
S.
,
2008
, “
Model-Based Prognostic Techniques Applied to a Suspension System
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
,
38
(
5
), pp.
1156
1168
.10.1109/TSMCA.2008.2001055
16.
Schwabacher
,
M.
,
2005
, “
A Survey of Data-Driven Prognostics
,”
Proceedings of the AIAA Infotech@Aerospace Conference
,
AIAA
,
Arlington, VA
.
17.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
. 0377-221710.1016/j.ejor.2010.11.018
18.
Daigle
,
M.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2012
, “
An Efficient Deterministic Approach to Model-Based Prediction Uncertainty Estimation
,”
Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
Minneapolis, MN
, pp.
326
335
.
19.
Tampier
,
C.
,
Pérez
,
A.
,
Jaramillo
,
F.
,
Quintero
,
V.
,
Orchard
,
M. E.
, and
Silva
,
J. F.
,
2015
, “
Lithium-Ion Battery End-of-Discharge Time Estimation and Prognosis Based on Bayesian Algorithms and Outer Feedback Correction Loops: A Comparative Analysis
,”
Annual Conference of the PHM Society
,
PHM Society
,
San Diego, CA
.
20.
Ling
,
Y.
,
Shantz
,
C.
,
Mahadevan
,
S.
, and
Sankararaman
,
S.
,
2011
, “
Stochastic Prediction of Fatigue Loading Using Real-Time Monitoring Data
,”
Int. J. Fatigue
,
33
(
7
), pp.
868
879
.10.1016/j.ijfatigue.2011.01.015
21.
Sankararaman
,
S.
,
Ling
,
Y.
,
Shantz
,
C.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification in Fatigue Crack Growth Prognosis
,”
Int. J. Prognostics Health Manage.
,
2
(
1
), pp. 
1
15
22.
Saha
,
B.
,
Quach
,
C. C.
, and
Goebel
,
K.
,
2012
, “
Optimizing Battery Life for Electric UAVs Using a Bayesian Framework
,”
Proceedings of the 2012 IEEE Aerospace Conference
,
IEEE
,
Big Sky, MT
.
23.
Sankararaman
,
S.
, and
Goebel
,
K.
,
2013
, “
Why is the Remaining Useful Life Prediction Uncertain?
Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
New Orleans, LA
, pp.
337
349
.
24.
Sankararaman
,
S.
,
Daigle
,
M.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2013
, “
Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction
,”
Proceedings of the 2013 IEEE Aerospace Conference
,
PHM Society
,
New Orleans, LA
.
25.
Daigle
,
M.
, and
Sankararaman
,
S.
,
2013
, “
Advanced Methods for Determining Prediction Uncertainty in Model-Based Prognostics With Application to Planetary Rovers
,”
Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
New Orleans, LA
, pp.
262
274
.
26.
Phoon
,
K.
,
Huang
,
S.
, and
Quek
,
S.
,
2002
, “
Simulation of Second-Order Processes Using Karhunen–Loeve Expansion
,”
Comput. Struct.
,
80
(
12
), pp.
1049
1060
.10.1016/S0045-7949(02)00064-0
27.
Sankararaman
,
S.
, and
Goebel
,
K.
,
2013
, “
Uncertainty Quantification in Remaining Useful Life of Aerospace Components Using State Space Models and Inverse Form
,”
Proceedings of the 15th Non-Deterministic Approaches Conference
,
AIAA
,
National Harbor, MD
.
28.
Balaban
,
E.
,
Narasimhan
,
S.
,
Daigle
,
M.
,
Roychoudhury
,
I.
,
Sweet
,
A.
,
Bond
,
C.
, and
Gorospe
,
G.
,
2013
, “
Development of a Mobile Robot Test Platform and Methods for Validation of Prognostics-Enabled Decision Making Algorithms
,”
Int. J. Prognostics Health Manage.
,
4
(
1
), pp. 
1
19
.
29.
Daigle
,
M.
, and
Goebel
,
K.
,
2010
, “
Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform
,”
Proceedings of the Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
Portland, OR
, pp.
326
335
.
30.
Ceraolo
,
M.
,
2000
, “
New Dynamical Models of Lead-Acid Batteries
,”
IEEE Trans. Power Syst.
,
15
(
4
), pp.
1184
1190
. 0885-895010.1109/59.898088
31.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2007
, “
An Integrated Approach to Battery Health Monitoring Using Bayesian Regression and State Estimation
,”
2007 IEEE Autotestcon
,
IEEE
,
Baltimore, MD
, pp.
646
653
.
32.
Chen
,
M.
, and
Rincon-Mora
,
G. A.
,
2006
, “
Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
504
511
. 0885-896910.1109/TEC.2006.874229
33.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
A New Extension of the Kalman Filter to Nonlinear Systems
,”
Proc. SPIE
,
3068
, pp.
182
193
.
34.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
2004
, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
. 0018-921910.1109/JPROC.2003.823141
35.
Daigle
,
M.
,
Saha
,
B.
, and
Goebel
,
K.
,
2012
, “
A Comparison of Filter-Based Approaches for Model-Based Prognostics
,”
Proceedings of the 2012 IEEE Aerospace Conference
,
IEEE
,
Big Sky, MT
.
36.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
37.
Saxena
,
A.
,
Celaya
,
J.
,
Saha
,
B.
,
Saha
,
S.
, and
Goebel
,
K.
,
2010
, “
Metrics for Offline Evaluation of Prognostic Performance
,”
Int. J. Prognostics Health Manage.
,
1
(
1
), pp. 
1
20
.
38.
Sweet
,
A.
,
Gorospe
,
G.
,
Daigle
,
M.
,
Celaya
,
J. R.
,
Balaban
,
E.
,
Roychoudhury
,
I.
, and
Narasimhan
,
S.
,
2014
, “
Demonstration of Prognostics-Enabled Decision Making Algorithms on a Hardware Mobile Robot Test Platform
,”
Annual Conference of the Prognostics and Health Management Society
,
PHM Society
,
Fort Worth, TX
, pp.
142
150
.
You do not currently have access to this content.