Abstract

Remaining useful life (RUL) serves as a key indicator of system health, and its accurate and timely prediction supports informed decision-making for efficient operation and maintenance. This is essential for complex engineering systems (CESes) such as unmanned surface vessels (USVs), where the human operators have limited opportunity to intervene during the operation. This paper proposes a framework for predicting the RUL of the CESes. The proposed framework employs a probabilistic deep learning (PDL) approach to predict the component's RUL and an equation node-based Bayesian network (BN) to predict system RUL (SRUL) at any future time-step. The component-level RUL method is validated using the NASA's Commercial Modular Aero-Propulsion System Simulation (c-mapss) dataset, and then the proposed framework is demonstrated with a USV case study. The results are evaluated using a set of quality metrics. By making use of the condition-monitoring sensor data, component reliability data, and models that account for the complex causal relationships between components, the proposed framework can provide near real-time predictions of the RUL with uncertainty of a CES, thus supporting its informed decision-making during the operation.

References

1.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2019
, “
Lithium-Ion Battery Remaining Useful Life Prediction With Box–Cox Transformation and Monte Carlo Simulation
,”
IEEE Trans. Ind. Electron.
,
66
(
2
), pp.
1585
1597
.10.1109/TIE.2018.2808918
2.
Wang
,
D.
, and
Tsui
,
K.-L.
,
2018
, “
Brownian Motion With Adaptive Drift for Remaining Useful Life Prediction: Revisited
,”
Mech. Syst. Signal Process.
,
99
, pp.
691
701
.10.1016/j.ymssp.2017.07.015
3.
Deng
,
Y.
,
Barros
,
A.
, and
Grall
,
A.
,
2016
, “
Degradation Modeling Based on a Time-Dependent Ornstein-Uhlenbeck Process and Residual Useful Lifetime Estimation
,”
IEEE Trans. Reliab.
,
65
(
1
), pp.
126
140
.10.1109/TR.2015.2462353
4.
Saxena
,
A.
, and
Goebel
,
K.
,
2008
, “
Turbofan Engine Degradation Simulation Data Set
,”
NASA AMES Prognostics Data Repository
, Vol.
18
, NASA Ames, Moffett Field, CA.
5.
Liu
,
C.
,
Zhang
,
L.
,
Liao
,
Y.
,
Wu
,
C.
, and
Peng
,
G.
,
2019
, “
Multiple Sensors Based Prognostics With Prediction Interval Optimization Via Echo State Gaussian Process
,”
IEEE Access
,
7
, pp.
112397
112409
.10.1109/ACCESS.2019.2925634
6.
Hsu
,
C.-S.
, and
Jiang
,
J.-R.
,
2018
, “
Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning
,”
2018 IEEE International Conference on Applied System Invention
(
ICASI
), Chiba, Japan,
Apr. 13–17
, pp.
58
61
.10.1109/ICASI.2018.8394326
7.
Tamssaouet
,
F.
,
Nguyen
,
K. T.
,
Medjaher
,
K.
, and
Orchard
,
M. E.
,
2023
, “
System-Level Failure Prognostics: Literature Review and Main Challenges
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
237
(
3
), pp.
524
545
.10.1177/1748006X221118448
8.
Moradi
,
R.
, and
Groth
,
K. M.
,
2020
, “
Modernizing Risk Assessment: A Systematic Integration of PRA and PHM Techniques
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107194
.10.1016/j.ress.2020.107194
9.
Moradi
,
R.
,
Cofre-Martel
,
S.
,
Droguett
,
E. L.
,
Modarres
,
M.
, and
Groth
,
K. M.
,
2022
, “
Integration of Deep Learning and Bayesian Networks for Condition and Operation Risk Monitoring of Complex Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108433
.10.1016/j.ress.2022.108433
10.
Wu
,
Z.
,
Fillmore
,
T. B.
,
Vega
,
M. A.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2022
, “
Diagnostics and Prognostics of Multi-Mode Failure Scenarios in Miter Gates Using Multiple Data Sources and a Dynamic Bayesian Network
,”
Struct. Multidiscip. Optim.
,
65
(
9
), p.
270
.10.1007/s00158-022-03381-z
11.
Nguyen
,
K. T.
,
Medjaher
,
K.
, and
Gogu
,
C.
,
2022
, “
Probabilistic Deep Learning Methodology for Uncertainty Quantification of Remaining Useful Lifetime of Multi-Component Systems
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108383
.10.1016/j.ress.2022.108383
12.
Rodrigues
,
L. R.
,
2018
, “
Remaining Useful Life Prediction for Multiple-Component Systems Based on a System-Level Performance Indicator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
141
150
.10.1109/TMECH.2017.2713722
13.
Mitici
,
M.
,
de Pater
,
I.
,
Barros
,
A.
, and
Zeng
,
Z.
,
2023
, “
Dynamic Predictive Maintenance for Multiple Components Using Data-Driven Probabilistic RUL Prognostics: The Case of Turbofan Engines
,”
Reliab. Eng. Syst. Saf.
,
234
, p.
109199
.10.1016/j.ress.2023.109199
14.
Langseth
,
H.
, and
Portinale
,
L.
,
2007
, “
Bayesian Networks in Reliability
,”
Reliab. Eng. Syst. Saf.
,
92
(
1
), pp.
92
108
.10.1016/j.ress.2005.11.037
15.
Yang
,
R.
,
Khan
,
F.
,
Taleb-Berrouane
,
M.
, and
Kong
,
D.
,
2020
, “
A Time-Dependent Probabilistic Model for Fire Accident Analysis
,”
Fire Saf. J.
,
111
, p.
102891
.10.1016/j.firesaf.2019.102891
16.
Yang
,
R.
,
Utne
,
I.
,
Liu
,
Y.
, and
Paltrinieri
,
N.
,
2020
, “
Dynamic Risk Analysis of Operation of the Autonomous Underwater Vehicle (AUV)
,” The 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management (
ESREL2020 PSAM15
), Venice, Italy, Nov. 1–5, pp. 1–8.https://www.researchgate.net/profile/Ruochen?Yang?2/publication/343650379_Dynamic_Risk_Analysis_of_Operation_of_the_Autonomous_Underwater_Vehicle_AUV/links/5f3641a5458515b7291f2bde/Dynamic?Risk?Analysis?of?Operation?of?the?Autonomous?Underwater?Vehicle?AUV.pdf
17.
Yang
,
R.
,
Bremnes
,
J. E.
, and
Utne
,
I. B.
,
2023
, “
Online Risk Modeling of Autonomous Marine Systems: Case Study of Autonomous Operations Under Sea Ice
,”
Ocean Eng.
,
281
, p.
114765
.10.1016/j.oceaneng.2023.114765
18.
Wang
,
H.
,
Núñez
,
A.
,
Liu
,
Z.
,
Zhang
,
D.
, and
Dollevoet
,
R.
,
2020
, “
A Bayesian Network Approach for Condition Monitoring of High-Speed Railway Catenaries
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
10
), pp.
4037
4051
.10.1109/TITS.2019.2934346
19.
Lewis
,
A. D.
, and
Groth
,
K. M.
,
2023
, “
A Comparison of DBN Model Performance in SIPPRA Health Monitoring Based on Different Data Stream Discretization Methods
,”
Reliab. Eng. Syst. Saf.
,
236
, p.
109206
.10.1016/j.ress.2023.109206
20.
Sahu
,
A. R.
, and
Palei
,
S. K.
,
2022
, “
Fault Analysis of Dragline Subsystem Using Bayesian Network Model
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108579
.10.1016/j.ress.2022.108579
21.
Soleimani
,
M.
,
Campean
,
F.
, and
Neagu
,
D.
,
2021
, “
Integration of Hidden Markov Modelling and Bayesian Network for Fault Detection and Prediction of Complex Engineered Systems
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107808
.10.1016/j.ress.2021.107808
22.
Weber
,
P.
,
Medina-Oliva
,
G.
,
Simon
,
C.
, and
Iung
,
B.
,
2012
, “
Overview on Bayesian Networks Applications for Dependability, Risk Analysis and Maintenance Areas
,”
Eng. Appl. Artif. Intell.
,
25
(
4
), pp.
671
682
.10.1016/j.engappai.2010.06.002
23.
Kordestani
,
M.
,
Saif
,
M.
,
Orchard
,
M. E.
,
Razavi-Far
,
R.
, and
Khorasani
,
K.
,
2021
, “
Failure Prognosis and Applications—A Survey of Recent Literature
,”
IEEE Trans. Reliab.
,
70
(
2
), pp.
728
748
.10.1109/TR.2019.2930195
24.
Che
,
C.
,
Wang
,
H.
,
Fu
,
Q.
, and
Ni
,
X.
,
2019
, “
Combining Multiple Deep Learning Algorithms for Prognostic and Health Management of Aircraft
,”
Aerosp. Sci. Technol.
,
94
, p.
105423
.10.1016/j.ast.2019.105423
25.
Tamilselvan
,
P.
, and
Wang
,
P.
,
2013
, “
Failure Diagnosis Using Deep Belief Learning Based Health State Classification
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
124
135
.10.1016/j.ress.2013.02.022
26.
Deutsch
,
J.
, and
He
,
D.
,
2018
, “
Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
48
(
1
), pp.
11
20
.10.1109/TSMC.2017.2697842
27.
Nguyen
,
K. T.
, and
Medjaher
,
K.
,
2019
, “
A New Dynamic Predictive Maintenance Framework Using Deep Learning for Failure Prognostics
,”
Reliab. Eng. Syst. Saf.
,
188
, pp.
251
262
.10.1016/j.ress.2019.03.018
28.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.10.1016/j.ress.2017.11.021
29.
Xia
,
M.
,
Zheng
,
X.
,
Imran
,
M.
, and
Shoaib
,
M.
,
2020
, “
Data-Driven Prognosis Method Using Hybrid Deep Recurrent Neural Network
,”
Appl. Soft Comput.
,
93
, p.
106351
.10.1016/j.asoc.2020.106351
30.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,”
2017 IEEE International Conference on Prognostics and Health Management
(
ICPHM
), Dallas, TX,
June 19–21
, pp.
88
95
.10.1109/ICPHM.2017.7998311
31.
Han
,
P.
,
Ellefsen
,
A. L.
,
Li
,
G.
,
Holmeset
,
F. T.
, and
Zhang
,
H.
,
2021
, “
Fault Detection With LSTM-Based Variational Autoencoder for Maritime Components
,”
IEEE Sens. J.
,
21
(
19
), pp.
21903
21912
. 10.1109/JSEN.2021.3105226
32.
Zhou
,
T.
,
Zhang
,
L.
,
Han
,
T.
,
Droguett
,
E. L.
,
Mosleh
,
A.
, and
Chan
,
F. T.
,
2023
, “
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in Safety-Critical Applications
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108865
.10.1016/j.ress.2022.108865
33.
Hüllermeier
,
E.
, and
Waegeman
,
W.
,
2021
, “
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
,”
Mach. Learn.
,
110
(
3
), pp.
457
506
.10.1007/s10994-021-05946-3
34.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
35.
Zhu
,
R.
,
Chen
,
Y.
,
Peng
,
W.
, and
Ye
,
Z.-S.
,
2022
, “
Bayesian Deep-Learning for RUL Prediction: An Active Learning Perspective
,”
Reliab. Eng. Syst. Saf.
,
228
, p.
108758
.10.1016/j.ress.2022.108758
36.
Lin
,
Y.-H.
, and
Li
,
G.-H.
,
2022
, “
A Bayesian Deep Learning Framework for RUL Prediction Incorporating Uncertainty Quantification and Calibration
,”
IEEE Trans. Ind. Inf.
,
18
(
10
), pp.
7274
7284
.10.1109/TII.2022.3156965
37.
Remadna
,
I.
,
Terrissa
,
L. S.
,
Al Masry
,
Z.
, and
Zerhouni
,
N.
,
2022
, “
RUL Prediction Using a Fusion of Attention-Based Convolutional Variational AutoEncoder and Ensemble Learning Classifier
,”
IEEE Trans. Reliab.
, 72(1), pp. 106–124.10.1109/TR.2022.3190639
38.
Modarres
,
M.
,
Kaminskiy
,
M. P.
, and
Krivtsov
,
V.
,
2016
,
Reliability Engineering and Risk Analysis: A Practical Guide
,
CRC Press
, Boca Raton, FL.
39.
Modarres
,
M.
,
Amiri
,
M.
, and
Jackson
,
C.
,
2017
, “
Overview of Probabilistic Physics-of-Failure Approach to Reliability
,” Probabilistic Physics of Failure Approach to Reliability, Wiley, Hoboken, NJ, pp.
1
11
.10.1002/9781119388692.ch1
40.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2019
, “
Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme
,”
Mech. Syst. Signal Process.
,
129
, pp.
764
780
.10.1016/j.ymssp.2019.05.005
41.
Peng
,
K.
,
Jiao
,
R.
,
Dong
,
J.
, and
Pi
,
Y.
,
2019
, “
A Deep Belief Network Based Health Indicator Construction and Remaining Useful Life Prediction Using Improved Particle Filter
,”
Neurocomputing
,
361
, pp.
19
28
.10.1016/j.neucom.2019.07.075
42.
Waskom
,
M. L.
,
2021
, “
Seaborn: Statistical Data Visualization
,”
J. Open Source Software
,
6
(
60
), p.
3021
.10.21105/joss.03021
43.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint
arXiv:1412.6980
10.48550/arXiv.1412.6980.
44.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al.,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,” preprint
arXiv:1912.01703
10.48550/arXiv.1912.01703.
45.
Kampitakis
,
E. P.
,
Fafoutellis
,
P.
,
Oprea
,
G.-M.
, and
Vlahogianni
,
E. I.
,
2023
, “
Shared Space Multi-Modal Traffic Modeling Using LSTM Networks With Repulsion Map and an Intention-Based Multi-Loss Function
,”
Transp. Res. Part C: Emerging Technol.
,
150
, p.
104104
.10.1016/j.trc.2023.104104
46.
Liu
,
L.
,
Song
,
X.
, and
Zhou
,
Z.
,
2022
, “
Aircraft Engine Remaining Useful Life Estimation Via a Double Attention-Based Data-Driven Architecture
,”
Reliab. Eng. Syst. Saf.
,
221
, p.
108330
.10.1016/j.ress.2022.108330
47.
Khosravi
,
A.
,
Nahavandi
,
S.
,
Creighton
,
D.
, and
Atiya
,
A. F.
,
2011
, “
Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals
,”
IEEE Trans. Neural Networks
,
22
(
3
), pp.
337
346
.10.1109/TNN.2010.2096824
48.
BayesFusion, LLC
,
2022
, “
GeNIe Modeler, User Manual
,” BayesFusion, Pittsburgh, PA, accessed Apr. 8, 2025, https://support.bayesfusion.com/docs/GeNIe.pdf
49.
Wen
,
P.
,
Zhao
,
S.
,
Chen
,
S.
, and
Li
,
Y.
,
2021
, “
A Generalized Remaining Useful Life Prediction Method for Complex Systems Based on Composite Health Indicator
,”
Reliab. Eng. Syst. Saf.
,
205
, p.
107241
.10.1016/j.ress.2020.107241
50.
Kim
,
M.
, and
Liu
,
K.
,
2021
, “
A Bayesian Deep Learning Framework for Interval Estimation of Remaining Useful Life in Complex Systems by Incorporating General Degradation Characteristics
,”
IISE Trans.
,
53
(
3
), pp.
326
340
.10.1080/24725854.2020.1766729
51.
Nadarajah
,
S.
, and
Kotz
,
S.
,
2008
, “
Exact Distribution of the Max/Min of Two Gaussian Random Variables
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
,
16
(
2
), pp.
210
212
.10.1109/TVLSI.2007.912191
52.
Lewis
,
A. D.
, and
Groth
,
K. M.
,
2022
, “
Metrics for Evaluating the Performance of Complex Engineering System Health Monitoring Models
,”
Reliab. Eng. Syst. Saf.
,
223
, p.
108473
.10.1016/j.ress.2022.108473
53.
Liao
,
Y.
,
Zhang
,
L.
, and
Liu
,
C.
,
2018
, “
Uncertainty Prediction of Remaining Useful Life Using Long Short-Term Memory Network Based on Bootstrap Method
,”
2018 IEEE International Conference on Prognostics and Health Management
(
ICPHM
), Seattle, WA, June 11–13, pp.
1
8
.10.1109/ICPHM.2018.8448804
54.
Gao
,
G.
,
Que
,
Z.
, and
Xu
,
Z.
,
2020
, “
Predicting Remaining Useful Life With Uncertainty Using Recurrent Neural Process
,”
2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion
(
QRS-C
), Macau, China, Dec. 11–14, pp.
291
296
.10.1109/QRS-C51114.2020.00057
55.
Heimes
,
F. O.
,
2008
, “
Recurrent Neural Networks for Remaining Useful Life Estimation
,”
2008 International Conference on Prognostics and Health Management,
Denver, CO,
Oct. 6–9
, pp.
1
6
.10.1109/PHM.2008.4711422
56.
Liaw
,
R.
,
Liang
,
E.
,
Nishihara
,
R.
,
Moritz
,
P.
,
Gonzalez
,
J. E.
, and
Stoica
,
I.
,
2018
, “
Tune: A Research Platform for Distributed Model Selection and Training
,” preprint arXiv:1807.05118.
57.
Xu
,
H.
,
Fard
,
N.
, and
Fang
,
Y.
,
2020
, “
Time Series Chain Graph for Modeling Reliability Covariates in Degradation Process
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107207
.10.1016/j.ress.2020.107207
58.
Rigamonti
,
M.
,
Baraldi
,
P.
,
Zio
,
E.
,
Roychoudhury
,
I.
,
Goebel
,
K.
, and
Poll
,
S.
,
2018
, “
Ensemble of Optimized Echo State Networks for Remaining Useful Life Prediction
,”
Neurocomputing
,
281
, pp.
121
138
.10.1016/j.neucom.2017.11.062
59.
Zeng
,
J.
, and
Liang
,
Z.
,
2023
, “
A Dynamic Predictive Maintenance Approach Using Probabilistic Deep Learning for a Fleet of Multi-Component Systems
,”
Reliab. Eng. Syst. Saf.
,
238
, p.
109456
.10.1016/j.ress.2023.109456
60.
Sun
,
W.
,
Zhao
,
R.
,
Yan
,
R.
,
Shao
,
S.
, and
Chen
,
X.
,
2017
, “
Convolutional Discriminative Feature Learning for Induction Motor Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1350
1359
. 10.1109/TII.2017.2672988
61.
Hazra
,
I.
,
Chatterjee
,
A.
,
Southgate
,
J.
,
Weiner
,
M. J.
,
Groth
,
K. M.
, and
Azarm
,
S.
,
2024
, “
A Reliability-Based Optimization Framework for Planning Operational Profiles for Unmanned Systems
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051704
.10.1115/1.4063661
62.
Yang
,
R.
,
Vatn
,
J.
, and
Utne
,
I. B.
,
2023
, “
Dynamic Maintenance Planning for Autonomous Marine Systems (AMS) and Operations
,”
Ocean Eng.
,
278
, p.
114492
.10.1016/j.oceaneng.2023.114492
63.
The MathWorks, Inc.
,
2022
, “
MATLAB Version: 9.13.0 (R2022b)
,”
The MathWorks
,
Natick, MA
, accessed Feb .1, 2025, https://www.mathworks.com
64.
David
,
M.
,
William
,
F.
, and
John
,
R.
,
2016
,
Nonelectronic Parts Reliability Data (NPRD)
,
Reliability Information Analysis Center
,
Utica, NY
.
65.
SINTEF
,
2015
,
Offshore Reliability Data Handbook
, 6th ed.,
OREDA Participants, Det Norske Veritas (DNV
), Norway.
66.
Chesley
,
J. C.
,
1998
, Handbook of Reliability Prediction Procedures for Mechanical Equipment,
Naval Surface Warfare Center (NSWC) Carderock Division
,
Logistics Engineering Technology Branch
, West Bethesda, MA.https://reliabilityanalyticstoolkit.appspot.com/static/Handbook_of_Reliability_Prediction_Procedures_for_Mechanical_Equipment_NSWC?11.pdf
You do not currently have access to this content.