Abstract

Model calibration is a critical step in many fields to ensure that decisions are made based on models that best capture the behavior of the physical system. Typically, an estimation of the uncertainty of the model is also needed to aid decision makers and to assess risks. Traditional statistical methods have met this need but come at a high computational expense, and thus they may be impractical in industries that desire rapid innovation and decision-making. Optimization and machine learning (ML) approaches offer computationally efficient algorithms for model calibration but do not provide a quantification of model uncertainty. This work proposes a statistical inference approach for model calibration, leveraging griddy Gibbs sampling to efficiently and flexibly calibrate models and provide an estimation of the posterior distribution for the calibrated variables. Using this approach, decision makers would gain a sense of the model uncertainty so that risk can appropriately be accounted for in decisions based upon the model results. The model is benchmarked against traditional Bayesian inference using a piston thermal model with unknown backside heat transfer boundary conditions as the benchmark model. When a sufficient number of simulations and sensor data points are used, the griddy Gibbs calibration provided nearly identical calibrations and 95% credible intervals (CI) on the calibrated variables to the traditional Bayesian calibration at a fraction of the computation cost.

References

1.
Fisher
,
R.
,
1920
, “
A Mathematical Examination of the Methods of Determining the Accuracy of an Observation by the Mean Error, and by the Mean Square Error
,”
Mon. Not. R. Astron. Soc.
,
80
(
8
), pp.
758
770
.10.1093/mnras/80.8.758
2.
Chai
,
T.
, and
Draxler
,
R.
,
2014
, “
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature
,”
Geosci. Model Dev. Discuss.
,
7
(
3
), pp.
1525
1534
.10.5194/gmd-7-1247-2014
3.
Willmott
,
C.
, and
Matsuura
,
K.
,
2005
, “
Advantages of the Mean Absolute Error (MAE) Over the Root Mean Square Error (RMSE) in Assessing Average Model Performance
,”
Clim. Res.
,
30
(
1
), pp.
79
82
.10.3354/cr030079
4.
Allen
,
D.
,
1971
, “
Mean Square Error of Prediction as a Criterion for Selecting Variables
,”
Technometrics
,
13
(
3
), pp.
469
475
.10.1080/00401706.1971.10488811
5.
Fisher
,
R.
,
1922
, “
On the Mathematical Foundations of Theoretical Statistics
,”
Philos. Trans. R. Soc. London
,
222
(594-604), pp.
309
368
.10.1098/rsta.1922.0009
6.
Pearson
,
K.
,
1936
, “
Method of Moments and Method of Maximum Likelihood
,”
Biometrika
,
28
(
1–2
), pp.
34
47
.10.1093/biomet/28.1-2.34
7.
Wooldridge
,
J.
,
2001
, “
Applications of Generalized Method of Moments Estimation
,”
J. Econ. Perspect.
,
15
(
4
), pp.
87
100
.10.1257/jep.15.4.87
8.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
9.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J.
,
Cafeo
,
J.
, and
Ryne
,
R.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.10.1137/S1064827503426693
10.
Oakley
,
J.
, and
O'Hagan
,
A.
,
2002
, “
Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs
,”
Biometrika
,
89
(
4
), pp.
769
784
.10.1093/biomet/89.4.769
11.
Gu
,
M.
, and
Wang
,
L.
,
2018
, “
Scaled Gaussian Stochastic Process for Computer Model Calibration and Prediction
,”
SIAM/ASA J. Uncertainty Quantif.
,
6
(
4
), pp.
1555
1583
.10.1137/17M1159890
12.
Li
,
Z.
, and
Tan
,
M. H. Y.
,
2022
, “
A Gaussian Process Emulator Based Approach for Bayesian Calibration of a Functional Input
,”
Technometrics
,
64
(
3
), pp.
299
311
.10.1080/00401706.2021.1971567
13.
Lye
,
A.
,
Cicirello
,
A.
, and
Patelli
,
E.
,
2021
, “
Sampling Methods for Solving Bayesian Model Updating Problems: A Tutorial
,”
Mech. Syst. Signal Process.
,
159
, p.
107760
.10.1016/j.ymssp.2021.107760
14.
Brooks
,
S.
,
1998
, “
Markov Chain Monte Carlo Method and Its Application
,”
J. R. Stat. Soc.: Ser. D (Stat.)
,
47
(
1
), pp.
69
100
.10.1111/1467-9884.00117
15.
Chib
,
S.
, and
Greenberg
,
E.
,
1995
, “
Understanding the Metropolis-Hastings Algorithm
,”
Am. Stat.
,
49
(
4
), pp.
327
335
.10.1080/00031305.1995.10476177
16.
Bayarri
,
M. J.
,
Berger
,
J. O.
, and
Liu
,
F.
,
2009
, “
Modularization in Bayesian Analysis, With Emphasis on Analysis of Computer Models
,”
Bayesian Anal.
,
4
(
1
), pp.
119
150
.10.1214/09-BA404
17.
Geman
,
S.
, and
Geman
,
D.
,
1984
, “
Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, PAMI-6(
6
), pp.
721
741
.10.1109/TPAMI.1984.4767596
18.
Ritter
,
C.
, and
Tanner
,
M.
,
1992
, “
Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler
,”
J. Am. Stat. Assoc.
,
87
(
419
), pp.
861
868
.10.1080/01621459.1992.10475289
19.
Feldt
,
R.
, and
Stukalov
,
A.
,
2018
, “
Blackboxoptim.jl Version 0.6.3
,” Github repository, San Francisco, CA, accessed Dec. 2023, https://github.com/robertfeldt/BlackBoxOptim.jl
20.
Bezanson
,
J.
,
Karpinski
,
S.
,
Shah
,
V. B.
, and
Edelman
,
A.
,
2012
, “
Julia: A Fast Dynamic Language for Technical Computing
,” preprint
arXiv:1209.5145
.10.48550/arXiv.1209.5145
21.
Szmytka
,
F.
,
Salem
,
M.
,
Rezai-Aria
,
F.
, and
Oudin
,
A.
,
2015
, “
Thermal Fatigue Analysis of Automotive Diesel Piston: Experimental Procedure and Numerical Protocol
,”
Int. J. Fatigue
,
73
, pp.
48
57
.10.1016/j.ijfatigue.2014.11.011
22.
Song
,
H.-W.
,
Yu
,
G.
,
Tan
,
J.-S.
,
Zhou
,
L.
, and
Yu
,
X.-L.
,
2008
, “
Thermal Fatigue on Pistons Induced by Shaped High Power Laser. Part I: Experimental Study of Transient Temperature Field and Temperature Oscillation
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
757
767
.10.1016/j.ijheatmasstransfer.2007.04.035
23.
Lempereur
,
C.
,
Andral
,
R.
, and
Prudhomme
,
J.
,
2008
, “
Surface Temperature Measurement on Engine Components by Means of Irreversible Thermal Coatings
,”
Meas. Sci. Technol.
,
19
(
10
), p.
105501
.10.1088/0957-0233/19/10/105501
24.
Marr
,
M. A.
,
Wallace
,
J. S.
,
Chandra
,
S.
,
Pershin
,
L.
, and
Mostaghimi
,
J.
,
2010
, “
A Fast Response Thermocouple for Internal Combustion Engine Surface Temperature Measurements
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
183
189
.10.1016/j.expthermflusci.2009.10.008
25.
Madison
,
D. P.
,
Miers
,
S. A.
,
Barna
,
G. L.
, and
Richerson
,
J. L.
,
2013
, “
Comparison of Piston Temperature Measurement Methods: Templugs Versus Wireless Telemetry With Thermocouples
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061602
.10.1115/1.4023493
26.
Gingrich
,
E. M.
,
2020
, “
High-Output Diesel Engine Heat Transfer
,” Ph.D. thesis,
University of Wisconsin-Madison
,
Madison, WI
.
27.
Gingrich
,
E.
,
Pierce
,
D. T.
,
Byrd
,
G.
,
Sebeck
,
K.
,
Korivi
,
V.
,
Muralidharan
,
G.
,
Wang
,
H.
, et al.,
2022
, “
Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications
,”
SAE
Paper No. 2022-01-0599.10.4271/2022-01-0599
28.
Wright
,
S.
,
Ravikumar
,
A.
,
Redmond
,
L.
,
McMahan
,
C.
,
Lawler
,
B.
,
Castanier
,
M. P.
,
Gingrich
,
E.
, and
Tess
,
M.
,
2024
, “
Benchmarking of Neural Network Methodologies for Piston Thermal Model Calibration
,”
SAE
Paper No. 2024-01-2598.10.4271/2024-01-2598
29.
Thermometrics
, 2025, “
Thermocouple Type J Temperature Sensor
,” Thermometrics, Northridge, CA, accessed Jan. 28, 2025, https://www.thermometricscorp.com/thermocouple-type-j.html
30.
Wright
,
S.
,
Ravikumar
,
A.
,
Redmond
,
L.
,
Lawler
,
B.
,
Castanier
,
M.
,
Gingrich
,
E.
, and
Tess
,
M.
,
2023
, “
Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models
,”
SAE
Paper No. 2023-01-0112.10.4271/2023-01-0112
You do not currently have access to this content.