Abstract

Sequential numerical model chains are often used in industrial analyses. For example, structural durability analysis involves first finite element simulations followed by fatigue postprocessing. The prohibitive computational cost of these entire numerical chains generally makes reliability assessment unfeasible unless strong simplifications are made. A new active learning Kriging method for sequential models (AK-SM) is proposed here to overcome the computational burden. AK-SM introduces a novel enrichment strategy within the well-known Active Kriging Monte Carlo Simulation framework, leveraging the sequential nature of the performance function. An imputation criterion based on a local functional decomposition and Kriging prediction variance is designed to selectively bypass costly evaluations of the first models and prioritize the more affordable postprocessor. The analysis of an analytical creep-fatigue interaction problem first, and of a modal transient finite-element fatigue of a bracket then, show that AK-SM is particularly suited to sequential numerical chains by achieving significant computational savings while maintaining a high accuracy in the failure probability estimation.

References

1.
Qian
,
H.-M.
,
Wei
,
J.
, and
Huang
,
H.-Z.
,
2023
, “
Structural Fatigue Reliability Analysis Based on Active Learning Kriging Model
,”
Int. J. Fatigue
,
172
, p.
107639
.10.1016/j.ijfatigue.2023.107639
2.
Zhang
,
D.
,
Li
,
Y.
,
Fu
,
Z.
,
Wang
,
Y.
, and
Xu
,
K.
,
2025
, “
Fatigue Reliability Analysis of Bogie Frames Considering Parameter Uncertainty
,”
Int. J. Fatigue
,
190
, p.
108632
.10.1016/j.ijfatigue.2024.108632
3.
Gaspar
,
B.
,
Naess
,
A.
,
Leira
,
B. J.
, and
Soares
,
C. G.
,
2014
, “
System Reliability Analysis by Monte Carlo Based Method and Finite Element Structural Models
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031603
.10.1115/1.4025871
4.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.10.1016/S0266-8920(01)00019-4
5.
Abdollahi
,
A.
,
Moghaddam
,
M. A.
,
Monfared
,
S. A. H.
,
Rashki
,
M.
, and
Li
,
Y.
,
2021
, “
Subset Simulation Method Including Fitness-Based Seed Selection for Reliability Analysis
,”
Eng. Comput.
,
37
(
4
), pp.
2689
2705
.10.1007/s00366-020-00961-9
6.
Melchers
,
R.
,
1989
, “
Importance Sampling in Structural System
,”
Struct. Saf.
,
6
(
1
), pp.
3
10
.10.1016/0167-4730(89)90003-9
7.
Rashki
,
M.
,
2021
, “
Sesc: A New Subset Simulation Method for Rare-Events Estimation
,”
Mech. Syst. Signal Process.
,
150
, p.
107139
.10.1016/j.ymssp.2020.107139
8.
Cheng
,
K.
,
Papaioannou
,
I.
,
Zhenzhou
,
L.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2023
, “
Rare Event Estimation With Sequential Directional Importance Sampling
,”
Struct. Saf.
,
100
, p.
102291
.10.1016/j.strusafe.2022.102291
9.
Bucher
,
C.
,
2009
, “
Asymptotic Sampling for High-Dimensional Reliability Analysis
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
504
510
.10.1016/j.probengmech.2009.03.002
10.
Hasofer
,
A.
, and
Lind
,
N.
,
1974
, “
Exact and Invariant Second Moment Code Format
,”
J. Eng. Mech.
,
100
(
1
), pp.
111
121
.10.1061/JMCEA3.0001848
11.
Kiureghian
,
A.
,
Lin
,
H.
, and
Hwang
,
S.-J.
,
1987
, “
Second‐Order Reliability Approximations
,”
J. Eng. Mech.
,
113
(
8
), pp.
1208
1225
.10.1061/(ASCE)0733-9399(1987)113:8(1208)
12.
Hu
,
Z.
,
Mansour
,
R.
,
Olsson
,
M.
, and
Du
,
X.
,
2021
, “
Second-Order Reliability Methods: A Review and Comparative Study
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3233
3263
.10.1007/s00158-021-03013-y
13.
Lu
,
Z.-H.
,
Hu
,
D.-Z.
, and
Zhao
,
Y.-G.
,
2017
, “
Second-Order Fourth-Moment Method for Structural Reliability
,”
ASME J. Eng. Mech.
,
143
(
4
), p.
06016010
.10.1061/(ASCE)EM.1943-7889.0001199
14.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Deep Learning for High-Dimensional Reliability Analysis
,”
Mech. Syst. Signal Process.
,
139
,p.
106399
.10.1016/j.ymssp.2019.106399
15.
Roy
,
A.
, and
Chakraborty
,
S.
,
2020
, “
Support Vector Regression Based Metamodel by Sequential Adaptive Sampling for Reliability Analysis of Structures
,”
Reliab. Eng. Syst. Saf.
,
200
, p.
106948
.10.1016/j.ress.2020.106948
16.
Bucher
,
C.
, and
Bourgund
,
U.
,
1990
, “
A Fast Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
.10.1016/0167-4730(90)90012-E
17.
Gaspar
,
B.
,
Teixeira
,
A.
, and
Guedes Soares
,
C.
,
2014
, “
Assessment of the Efficiency of Kriging Surrogate Models for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
37
, pp.
24
34
.10.1016/j.probengmech.2014.03.011
18.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.10.1016/j.jcp.2010.12.021
19.
Fajraoui
,
N.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2017
, “
Sequential Design of Experiment for Sparse Polynomial Chaos Expansions
,”
SIAM/ASA J. Uncert. Quantif.
,
5
(
1
), pp.
1061
1085
.10.1137/16M1103488
20.
Moustapha
,
M.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2022
, “
Active Learning for Structural Reliability: Survey, General Framework and Benchmark
,”
Struct. Saf.
,
96
, p.
102174
.10.1016/j.strusafe.2021.102174
21.
Bichon
,
B.
,
Eldred
,
M.
,
Swiler
,
L.
,
Mahadevan
,
S.
, and
McFarland
,
J.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.10.2514/1.34321
22.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
23.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
Lif: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
.10.1016/j.ress.2016.09.003
24.
Lv
,
Z.
,
Zhenzhou
,
L.
, and
Wang
,
P.
,
2015
, “
A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering
,”
Comput. Math. Appl.
,
70
(
5
), pp.
1182
1197
.10.1016/j.camwa.2015.07.004
25.
Yang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Yue
,
Z.
,
2015
, “
Probability and Convex Set Hybrid Reliability Analysis Based on Active Learning Kriging Model
,”
Appl. Math. Modell.
,
39
(
14
), pp.
3954
3971
.10.1016/j.apm.2014.12.012
26.
Zhang
,
X.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2019
, “
A Novel Active-Learning Function Towards Adaptive Kriging Surrogate Models for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
440
454
.10.1016/j.ress.2019.01.014
27.
Linxiong
,
H.
,
Bin
,
S.
,
Li
,
S.
,
Huacong
,
L.
, and
Jiaming
,
C.
,
2023
, “
Portfolio Allocation Strategy for Active Learning Kriging-Based Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
412
, p.
116066
.10.1016/j.cma.2023.116066
28.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H-P.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.10.1016/j.strusafe.2015.12.003
29.
Yun
,
W.
,
Zhenzhou
,
L.
,
Jiang
,
X.
,
Zhang
,
L.
, and
He
,
P.
,
2020
, “
Ak-Arbis: An Improved ak-Mcs Based on the Adaptive Radial-Based Importance Sampling for Small Failure Probability
,”
Struct. Saf.
,
82
, p.
101891
.10.1016/j.strusafe.2019.101891
30.
Zhang
,
X.
,
Zhenzhou
,
L.
, and
Cheng
,
K.
,
2021
, “
Ak-ds: An Adaptive Kriging-Based Directional Sampling Method for Reliability Analysis
,”
Mech. Syst. Signal Process.
,
156
, p.
107610
.10.1016/j.ymssp.2021.107610
31.
Ameryan
,
A.
,
Ghalehnovi
,
M.
, and
Rashki
,
M.
,
2022
, “
Ak-Sesc: A Novel Reliability Procedure Based on the Integration of Active Learning Kriging and Sequential Space Conversion Method
,”
Reliab. Eng. Syst. Saf.
,
217
, p.
108036
.10.1016/j.ress.2021.108036
32.
Li
,
G.
,
Jiang
,
L.
,
Lu
,
B.
, and
Wanxin
,
H.
,
2022
, “
Ak-Hmc-is: A Novel Importance Sampling Method for Efficient Reliability Analysis Based on Active Kriging and Hybrid Monte Carlo Algorithm
,”
ASME J. Mech. Des.
,
144
(
11
), pp.
1
41
.10.1115/1.4054994
33.
Thedy
,
J.
, and
Liao
,
K.-W.
,
2023
, “
Adaptive Kriging Adopting Pso With Hollow-Hypersphere Space in Structural Reliability Assessment
,”
Probab. Eng. Mech.
,
74
, p.
103513
.10.1016/j.probengmech.2023.103513
34.
Wang
,
D.
,
Zhang
,
D.
,
Meng
,
Y.
,
Yang
,
M.
,
Meng
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2023
, “
Ak-Hrn: An Efficient Adaptive Kriging-Based n-Hypersphere Rings Method for Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116146
.10.1016/j.cma.2023.116146
35.
Lelièvre
,
N.
,
Beaurepaire
,
P.
,
Mattrand
,
C.
, and
Gayton
,
N.
,
2018
, “
Ak-Mcsi: A Kriging-Based Method to Deal With Small Failure Probabilities and Time-Consuming Models
,”
Struct. Saf.
,
73
, pp.
1
11
.10.1016/j.strusafe.2018.01.002
36.
Wang
,
Z.
, and
Shafieezadeh
,
A.
,
2019
, “
Esc: An Efficient Error-Based Stopping Criterion for Kriging-Based Reliability Analysis Methods
,”
Struct. Multidiscip. Optim.
,
59
(
5
), pp.
1621
1637
.10.1007/s00158-018-2150-9
37.
Yi
,
J.
,
Zhou
,
Q.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2020
, “
Efficient Adaptive Kriging-Based Reliability Analysis Combining New Learning Function and Error-Based Stopping Criterion
,”
Struct. Multidiscip. Optim.
,
62
(
5
), pp.
2517
2536
.10.1007/s00158-020-02622-3
38.
Wen
,
Z.
,
Pei
,
H.
,
Liu
,
H.
, and
Yue
,
Z.
,
2016
, “
A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
170
179
.10.1016/j.ress.2016.05.002
39.
Zhao
,
Z.
,
Lu
,
Z.-H.
, and
Zhao
,
Y.-G.
,
2024
, “
P-AK-MCS: Parallel AK-MCS Method for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
75
, p.
103573
.10.1016/j.probengmech.2023.103573
40.
Dang
,
C.
,
Zhou
,
T.
,
Valdebenito
,
M.
, and
Faes
,
M.
,
2025
, “
Yet Another Bayesian Active Learning Reliability Analysis Method
,”
Struct. Saf.
,
112
, p.
102539
.10.1016/j.strusafe.2024.102539
41.
Dang
,
W.
, and
Beer
,
S.
,
2021
, “
Estimation of Failure Probability Function Under Imprecise Probabilities by Active Learning-Augmented Probabilistic Integration
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst.
, 7(4), pp. 1–53.10.1061/AJRUA6.0001179
42.
Dang
,
C.
,
Wei
,
P.
,
Faes
,
M.
,
Valdebenito
,
M.
, and
Beer
,
M.
,
2022
, “
Parallel Adaptive Bayesian Quadrature for Rare Event Estimation
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108621
.10.1016/j.ress.2022.108621
43.
Dang
,
C.
, and
Beer
,
M.
,
2024
, “
Semi-Bayesian Active Learning Quadrature for Estimating Extremely Low Failure Probabilities
,”
Reliab. Eng. Syst. Saf.
,
246
, p.
110052
.10.1016/j.ress.2024.110052
44.
Xu
,
Y.
,
Renteria
,
A.
, and
Wang
,
P.
,
2022
, “
Adaptive Surrogate Models With Partially Observed Information
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108566
.10.1016/j.ress.2022.108566
45.
Rabitz
,
H.
, and
Alis
,
O.
,
1999
, “
General Foundations of High Dimensional Model Representations
,”
J. Math. Chem.
,
25
, pp.
197
233
.10.1023/A:1019188517934
46.
Santner
,
T. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2018
,
The Design and Analysis of Computer Experiments
, 2nd ed.,
Springer Nature
,
Cambridge, MA
.
47.
Sobol
,
I.
,
1990
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Mat. Model.
,
2
, pp. 112--118.
48.
Wang
,
H. L.
,
2011
, “
Adaptive MLS-HDMR Metamodeling Techniques
,”
Expert Syst. Appl.
,
38
(
11
), pp. 14117--14126.10.1016/j.eswa.2011.04.220
49.
Li
,
E.
, and
Wang
,
H.
,
2016
, “
An Alternative Adaptive Differential Evolutionary Algorithm Assisted by Expected Improvement Criterion and Cut-HDMR Expansion and Its Application in Time-Based Sheet Forming Design
,”
Adv. Eng. Softw.
,
97
, pp.
96
107
.10.1016/j.advengsoft.2016.03.001
50.
Cheng
,
Y.
,
Liang
,
D.
,
Wang
,
W.
,
Gong
,
S.
, and
Xue
,
M.
,
2010
, “
An Efficient Approach of Aerosol Thermodynamic Equilibrium Predictions by the HDMR Method
,”
Atmos. Environ.
,
44
(
10
), pp.
1321
1330
.10.1016/j.atmosenv.2009.10.010
51.
Baran
,
M.
, and
Bieniasz
,
L.
,
2015
, “
Experiments With an Adaptive Multicut-HDMR Map Generation for Slowly Varying Continuous Multivariate Functions
,”
Appl. Math. Comput.
,
258
, pp.
206
219
.10.1016/j.amc.2015.02.007
52.
Mao
,
H.
, and
Mahadevan
,
S.
,
2000
, “
Reliability Analysis of Creep–Fatigue Failure
,”
Int. J. Fatigue
,
22
(
9
), pp.
789
797
.10.1016/S0142-1123(00)00046-3
53.
Basan
,
R.
,
Franulović
,
M.
,
Prebil
,
I.
, and
Kunc
,
R.
,
2017
, “
Study on Ramberg-Osgood and Chaboche Models for 42crmo4 Steel and Some Approximations
,”
J. Construct. Steel Res.
,
136
, pp.
65
74
.10.1016/j.jcsr.2017.05.010
54.
Zhu
,
S.-P.
,
Foletti
,
S.
, and
Beretta
,
S.
,
2017
, “
Probabilistic Framework for Multiaxial LCF Assessment Under Material Variability
,”
Int. J. Fatigue
,
103
, pp.
371
385
.10.1016/j.ijfatigue.2017.06.019
55.
Ge
,
Y.
,
Shi
,
J.
,
Li
,
Y.
, and
Shen
,
J.
,
2021
, “
An Efficient Kriging Modeling Method Based on Multidimensional Scaling for High-Dimensional Problems
,”
Algorithms
,
15
(
1
), p.
3
.10.3390/a15010003
56.
Blanchet-Scalliet
,
C.
,
Helbert
,
C.
,
Ribaud
,
M.
, and
Vial
,
C.
,
2019
, “
Four Algorithms to Construct a Sparse Kriging Kernel for Dimensionality Reduction
,”
Comput. Stat.
,
34
(
4
), pp.
1889
1909
.10.1007/s00180-019-00874-2
57.
Zhang
,
Y.
,
Huang
,
H.
,
Xiong
,
M.
, and
Yao
,
Z.
,
2023
, “
A Pc-Kriging-Hdmr Integrated With an Adaptive Sequential Sampling Strategy for High-Dimensional Approximate Modeling
,”
Int. J. Comput. Sci. Inform. Technol.
,
15
(
3
), pp.
63
79
.10.5121/ijcsit.2023.15305
You do not currently have access to this content.