Abstract

Previous research has shown that using sand as an explosive barrier material to design super-large explosion containment vessels is the most ideal. Therefore, it is essential to analyze the dynamic strain variation of the flat cover on the explosion containment vessel under different sand thicknesses by experimental method. First, by observing the history curves of strain collected by the experiments, it is found that the overall dynamic strain in 1000 ms consists of an abruptly rising phase and a gradually decreasing vibration recovery phase. By comparing the strain histories, it is found that when the sand thickness is 450 mm, the peak strains and the quasi-static residual strains of the 8 mm and 6 mm flat cover are weakened dramatically. Therefore, covering the cap with sand can significantly undermine the dynamic strain on the container closure. With the gradual increase of the sand thickness, the peak strain and the quasi-static residual strain of the flat cover show a linear decay law, and the slope of the linear decay is not affected by the thickness of the flat cover. Finally, according to the experiments and numerical analyses, the most effective range of sand/steel thickness ratio is determined to be 50–75, which can be accurately determined according to the actual working conditions. Sand can effectively absorb the transmitted energy of stress waves, and the sand/steel composite anti-explosion structure can effectively resist the impact of confined explosion.

References

1.
Li
,
X. J.
,
Wang
,
X. H.
,
Yan
,
H. H.
, and
Wang
,
Y. X.
,
2024
, “
The Application and Development of Explosive Working in China
,”
Eng. Blast.
,
30
(
5
), pp.
75
84
.
2.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
.10.1063/1.1722085
3.
Baker
,
W. E.
,
1960
, “
The Elastic-Plastic Response of Thin Spherical Shells to Internal Blast Loading
,”
ASME J. Appl. Mech.
,
27
(
1
), pp.
139
144
.10.1115/1.3643888
4.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
800
806
.10.1115/1.3625185
5.
White
,
J. J.
III
,
Trott
,
B. D.
, and
Backofen
,
J. J. E.
,
1977
, “
The Physics of Explosion Containment
,”
Phys. Technol.
,
8
(
3
), pp.
94
100
.10.1088/0305-4624/8/3/I01
6.
White
,
J. J.
III
, and
Trott
,
B. D.
,
1980
, “
Scaling Law for the Elastic Response of Spherical Explosion-Containment Vessels
,”
Exp. Mech.
,
20
(
5
), pp.
174
177
.10.1007/BF02327122
7.
Karpp
,
R. R.
,
Duffey
,
T. A.
, and
Neal
,
T. R.
,
1983
, “
Response of Containment Vessels to Explosive Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
105
(
1
), pp.
23
27
.10.1115/1.3264234
8.
Duan
,
Z. P.
, and
Yun
,
S. R.
,
1994
, “
The Experimental Study and Numerical Simulating of Explosion Containment Chamber
,”
China Saf. Sci. J.
,
3
(
1
), pp.
1
7
.
9.
Zhu
,
W. H.
,
Xue
,
H. L.
,
Zhou
,
G. Q.
, and
Schleyer
,
G. K.
,
1997
, “
Dynamic Response of Cylindrical Explosive Chambers to Internal Blast Loading Produced by a Concentrated Charge
,”
Int. J. Impact Eng.
,
19
(
9–10
), pp.
831
845
.10.1016/S0734-743X(97)00022-5
10.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
196
206
.10.1016/j.ijimpeng.2009.09.001
11.
Dong
,
Q.
,
Li
,
Q. M.
,
Zheng
,
J. Y.
, and
Hu
,
B. Y.
,
2010
, “
Effects of Structural Perturbations on Strain Growth in Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
11203
.10.1115/1.4000372
12.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Interactive Mechanisms Between the Internal Blast Loading and the Dynamic Elastic Response of Spherical Containment Vessels
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
349
358
.10.1016/j.ijimpeng.2009.10.004
13.
Liu
,
W. X.
,
Zhang
,
Q. M.
,
Zhong
,
F. P.
,
Cheng
,
S.
,
Zhang
,
D. Z.
, and
Yang
,
L.
,
2017
, “
Further Research on Mechanism of Strain Growth Caused by Superposition of Different Vibration Modes
,”
Int. J. Impact Eng.
,
104
, pp.
1
12
.10.1016/j.ijimpeng.2017.01.025
14.
Kubota
,
S.
,
Saburi
,
T.
,
Katoh
,
K.
,
Homae
,
T.
,
Ogata
,
Y.
, and
Iida
,
M.
,
2010
, “
Development of Compact Blast Containment Vessel for 10 kg Explosive
,”
Mater. Sci. Forum
,
638-642
, pp.
1047
1052
.10.4028/www.scientific.net/MSF.638-642.1047
15.
Sui
,
Y. G.
,
Zhang
,
D. Z.
,
Tang
,
S. Y.
,
Li
,
J.
, and
Lin
,
Q. Z.
,
2015
, “
Theoretical Analysis of a Reactive Reinforcement Method for Cylindrical Explosion-Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011206
.10.1115/1.4027450
16.
Chen
,
Y. J.
,
Wu
,
X. D.
,
Zheng
,
J. Y.
,
Deng
,
G. D.
, and
Li
,
Q. M.
,
2010
, “
Dynamic Responses of Discrete Multi-Layered Explosion Containment Vessels With the Consideration of Strain-Hardening and Strain-Rate Effects
,”
Int. J. Impact Eng.
,
37
(
7
), pp.
842
853
.10.1016/j.ijimpeng.2009.11.011
17.
Wang
,
S.
,
2018
, “
Analytical Evaluation of the Dome-Cylinder Interface of Nuclear Concrete Containment Subjected to Internal Pressure and Thermal Load
,”
Eng. Struct.
,
161
, pp.
1
7
.10.1016/j.engstruct.2018.01.063
18.
Li
,
S. Q.
,
Wang
,
Z. H.
,
Wu
,
G. Y.
,
Zhao
,
L. M.
, and
Li
,
X.
,
2014
, “
Dynamic Response of Sandwich Spherical Shell With Graded Metallic Foam Cores Subjected to Blast Loading
,”
Compos. Part A Appl. Sci. Manuf.
,
56
, pp.
262
271
.10.1016/j.compositesa.2013.10.019
19.
Liu
,
X.
,
Gu
,
W. B.
,
Liu
,
J. Q.
,
Xu
,
J. L.
,
Hu
,
Y. H.
, and
Hang
,
Y. M.
,
2020
, “
Dynamic Response of Cylindrical Explosion Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
135
, p.
103389
.10.1016/j.ijimpeng.2019.103389
20.
Sidorenko
,
Y. M.
, and
Shlenskii
,
P. S.
,
2013
, “
On the Assessment of Stress-Strain State of the Load-Bearing Structural Elements in the Tubular Explosion Chamber
,”
Strength Mater.
,
45
(
2
), pp.
210
220
.10.1007/s11223-013-9450-5
21.
Li
,
X. J.
,
Qin
,
X. Y.
, and
Yan
,
H. H.
,
2010
, “
Base Constraint Forms of Hemispherical Shock-Waves Trap Structures
,”
Explos. Shock Waves
,
30
(
1
), pp.
7
11
.
22.
Qin
,
X. Y.
,
2008
,
The Study on Large Scale Hemispherical Shock-Waves Trap Structure for Explosive Welding
,
Dalian University of Technology
, Liaoning,
China
.
23.
Wang
,
I. T.
,
2020
, “
Nonlinear Dynamic Response and Deformation Analysis of Soil Under the Explosion Shock Loading
,”
J. Vibroeng.
,
22
(
7
), pp.
1648
1660
.10.21595/jve.2020.21306
24.
Zhou
,
D. Z.
,
Li
,
X. J.
,
Wang
,
Y. X.
,
Wang
,
J.
,
Yan
,
H. H.
, and
Wang
,
X. H.
,
2023
, “
Research on Evolution of Shock Wave of Ground Explosion in Pit Type Explosion Containment Vessel
,”
Structures
,
50
, pp.
1164
1172
.10.1016/j.istruc.2023.02.082
25.
Zhou
,
D. Z.
,
Li
,
X. J.
,
Wang
,
X. H.
,
Wang
,
Y. X.
, and
Yan
,
H. H.
,
2024
, “
Analysis of Internal Load and Dynamic Response of Vacuum Explosion Containment Vessel With Sand Covered for Explosive Welding
,”
Explos. Shock Waves
,
44
(
10
), pp.
113
124
.10.11883/bzycj-2023-0455
26.
Liu
,
Z. F.
,
Li
,
X. J.
,
Wang
,
Y.
,
Yan
,
H. H.
, and
Zhou
,
D. Z.
,
2024
, “
Shock Response of Water-Protected Spherical Explosion Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
146
(
5
), p.
051702
.10.1115/1.4065894
27.
Liu
,
Z. F.
,
Li
,
X. J.
,
Zhou
,
D. Z.
,
Wang
,
X. H.
, and
Yan
,
H. H.
,
2024
, “
Influence of Water Cover on the Blast Resistance of Circular Plates
,”
ASME J. Pressure Vessel Technol.
,
146
(
6
), p.
061402
.10.1115/1.4066807
28.
Gan
,
L.
,
Zong
,
Z. H.
,
Gao
,
C.
,
Li
,
M. H.
, and
Qian
,
H. M.
,
2022
, “
Influence of Shape of Cuboid Explosives on Response of Plates Subjected to Blast Loads
,”
Thin-Walled Struct.
,
174
, p.
109077
.10.1016/j.tws.2022.109077
29.
Rigby
,
S. E.
,
Tyas
,
A.
, and
Bennett
,
T.
,
2012
, “
Single-Degree-of-Freedom Response of Finite Targets Subjected to Blast Loading – The Influence of Clearing
,”
Eng. Struct.
,
45
, pp.
396
404
.10.1016/j.engstruct.2012.06.034
30.
Cheng
,
S. W.
,
2022
,
Research on Ellipsoidal Blast-Resistant Door With the Combined Structure for Large Vacuum Explosion Container
,
Dalian University of Technology
, Liaoning,
China
.
31.
Cheng
,
S. W.
,
Li
,
X. J.
,
Wang
,
Y. X.
,
Zhou
,
D. Z.
,
Yan
,
H. H.
, and
Wang
,
Q.
,
2021
, “
Analysis of Explosion Load in a Cylindrical Container With Sand Bottom
,”
ASME J. Pressure Vessel Technol.
,
143
(
3
), p.
031401
.10.1115/1.4048417
32.
Zhou
,
D. Z.
,
Li
,
X. J.
,
Wang
,
Y. X.
,
Wang
,
J.
,
Yan
,
H. H.
, and
Wang
,
X. H.
,
2023
, “
Research on the Influence of Vacuum Degree on the Shock Wave in Pit Type Explosion Containment Vessel
,”
Structures
,
56
, p.
105033
.10.1016/j.istruc.2023.105033
33.
Xiang
,
D. L.
,
Rong
,
J. L.
, and
Li
,
J.
,
2014
, “
Effect of Al/O Ratio on the Detonation Performance and Under Water Explosion of HMX-Based Aluminized Explosives
,”
Propellants Explos. Pyrotech.
,
39
(
1
), pp.
65
73
.10.1002/prep.201300026
34.
Li
,
K. B.
,
Li
,
X. J.
,
Yan
,
H. H.
,
Wang
,
X. H.
, and
Yang
,
C. C.
,
2018
, “
Numerical Simulation for Near-Field Characteristics of Air Explosion Under Different Degrees of Vacuum
,”
J. Vib. Shock
,
37
(
17
), pp.
270
276
.10.13465/j.cnki.jvs.2018.17.038
35.
Lin
,
L.
,
Zhi
,
X. D.
,
Fan
,
F.
,
Meng
,
S. J.
, and
Su
,
J. J.
,
2014
, “
Determination of Parameters of Johnson-Cook of Q235B Steel
,”
J. Vib. Shock
,
33
(
9
), pp.
153
158
.10.13465/j.cnki.jvs.2014.09.028
36.
Huang
,
H.
,
Jiao
,
Q. J.
,
Nie
,
J. X.
, and
Qin
,
J. F.
,
2011
, “
Numerical Modeling of Underwater Explosion by One-Dimensional ANSYS-AUTODYN
,”
J. Ener. Mater.
,
29
(
4
), pp.
292
325
.10.1080/07370652.2010.527898
37.
Wang
,
G. H.
,
Wang
,
Y. X.
,
Lu
,
W. B.
,
Zhou
,
W.
,
Chen
,
M.
, and
Yan
,
P.
,
2016
, “
On the Determination of the Mesh Size for Numerical Simulations of Shock Wave Propagation in Near Field Underwater Explosion
,”
Appl. Ocean Res.
,
59
, pp.
1
9
.10.1016/j.apor.2016.05.011
38.
Ao
,
Q. Y.
,
Lu
,
X.
,
Jiang
,
Z. Y.
, and
Kang
,
P.
,
2024
, “
Numerical Simulation Accuracy Study of Underwater Explosion Shock Waves
,”
J. Unmanned Undersea Syst.
,
32
(
1
), pp.
158
165
.10.11993/j.issn.2096-3920.2023-0098
39.
Zhou
,
C.
,
Ji
,
G. J.
, and
Wei
,
J. F.
,
2023
, “
Research on Parameter Setting of Underwater Explosion Simulation
,”
J. Ordnance Equipment Eng.
,
44
(
8
), pp.
197
202
.
40.
Yan
,
Q. S.
, and
Chang
,
S.
,
2023
, “
Underwater Explosion 3D Numerical Simulation Characteristic Parameter Sensitivity Analysis
,”
J. Beijing Univ. Technol.
,
49
(
10
), pp.
1099
1108
.10.11936/bjutxb2022090043
41.
Li
,
S. B.
,
Dong
,
Z. X.
,
Qi
,
Y. J.
, and
Jiao
,
J. F.
,
2009
, “
Numerical Simulation for Spread Decay of Blasting Shock Wave in Different Media
,”
J. Vib. Shock
,
28
(
7
), pp.
115
117
.
42.
Clarke
,
S. D.
,
Fay
,
S. D.
,
Warren
,
J. A.
,
Tyas
,
A.
,
Rigby
,
S. E.
,
Reay
,
J. J.
,
Livesey
,
R.
, and
Elgy
,
I.
,
2017
, “
Predicting the Role of Geotechnical Parameters on the Output From Shallow Buried Explosives
,”
Int. J. Impact Eng.
,
102
, pp.
117
128
.10.1016/j.ijimpeng.2016.12.006
43.
Rong
,
K.
,
Yang
,
J.
, and
Chen
,
Z. Y.
,
2021
, “
Study on Attenuation Law of Soil Retaining Wall to Blast Wave
,”
Eng. Blast.
,
27
(
6
), pp.
1
8
.
44.
Zhou
,
D. Z.
,
2024
,
Research on Super Large Sand Covered Vacuum Explosion Containment Vessels for Explosive Welding
,
Dalian University of Technology
, Liaoning,
China
.
45.
Britan
,
A.
,
Ben-Dor
,
G.
,
Igra
,
O.
, and
Shapiro
,
H.
,
2006
, “
Development of a General Approach for Predicting the Pressure Fields of Unsteady Gas Flows Through Granular Media
,”
J. Appl. Phys.
,
99
(
9
), pp.
1
12
.10.1063/1.2197028
46.
Wagner
,
J. L.
,
Beresh
,
S. J.
,
Kearney
,
S. P.
,
Trott
,
W. M.
,
Castaneda
,
J. N.
,
Pruett
,
B. O.
, and
Baer
,
M. R.
,
2012
, “
A Multiphase Shock Tube for Shock Wave Interactions With Dense Particle Fields
,”
Exp. Fluids
,
52
(
6
), pp.
1507
1517
.10.1007/s00348-012-1272-x
47.
Belov
,
E.
,
Blachman
,
M.
,
Britan
,
A.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2015
, “
Experimental Investigation of the Stress Wave Propagation Inside a Granular Column Impacted by a Shock Wave
,”
Shock Waves
,
25
(
6
), pp.
675
681
.10.1007/s00193-015-0559-2
You do not currently have access to this content.