Abstract

It is generally accepted that the fracture strain is dependent on geometry/constraints in metals. However, the currently available implementation of extended finite element method (XFEM) assumes a fixed fracture strain criterion independent of the constraints. The objective of this paper is to develop and implement a variable fracture strain criterion in XFEM that is capable of predicting a wide range of fracture conditions in X65 pipeline steels with various crack tip constraints. Various small-scale tests with different out-of-plane constraints obtained from the literature were simulated using the XFEM in abaqus software. These tests included smooth bar, notched bar, single edge notch tension (SENT), and single edge notch bending (SENB) tests. For each test, the value of the maximum principal strain (Maxpe) as a fracture initiation criterion in the cohesive zone model (CZM) in XFEM framework was varied while keeping the fracture energy constant until the model was able to accurately replicate the reported experimental results. For each test, the crack tip constraints were characterized and the stress triaxialities and Lode angle parameters at the onset of fracture initiation were calculated from the models. The results allowed expressing of the fracture strain as an explicit function of stress triaxiality which was then implemented in abaqus XFEM using UDMGINI subroutine. For the sake of comparison, the tests were simulated in finite element method (FEM) using a similar damage initiation model, namely, the Johnson–Cook (J–C) model. A single model in XFEM was able to accurately replicate the experimental observations for all specimens and compared well to experiments in the way simulated by FEM damage model. However, it was observed that XFEM was more suitable to simulate specimens with pre-existing cracks such as in SENT and SENB tests since the crack grew through elements when mesh refinement was not required around the crack tips. Lastly, the simulated results were found to be less mesh sensitive in XFEM than in FEM damage models.

References

1.
Hosseini
,
A.
,
Cronin
,
D.
, and
Plumtree
,
A.
,
2013
, “
Crack in Corrosion Defect Assessment in Transmission Pipelines
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p. 021701.10.1115/1.4007644
2.
Ahmed
,
A. U.
,
2011
, “
Failure Criteria for Tearing of Telescoping Wrinkles
,”
Doctoral thesis
, University of Alberta, Edmonton, AB, Canada.10.7939/R3V02C
3.
Mondal
,
B. C.
,
2018
, “
Remaining Strength Assessment of Deteriorating Energy Pipelines
,”
Ph.D. dissertation
,
Memorial University of Newfoundland
,
St. John's, NL, Canada
.https://core.ac.uk/download/pdf/211575008.pdf
4.
Shahzamanian
,
M. M.
,
Lin
,
M.
,
Kainat
,
M.
,
Yoosef-Ghodsi
,
N.
, and
Adeeb
,
S.
,
2021
, “
Systematic Literature Review of the Application of Extended Finite Element Method in Failure Prediction of Pipelines
,”
J. Pipeline Sci. Eng.
,
1
(
2
), pp.
241
251
.10.1016/j.jpse.2021.02.003
5.
Chiesa
,
M.
,
Nyhus
,
B.
,
Skallerud
,
B.
, and
Thaulow
,
C.
,
2001
, “
Efficient Fracture Assessment of Pipelines. A Constraint-Corrected SENT Specimen Approach
,”
Eng. Fract. Mech.
,
68
(
5
), pp.
527
547
.10.1016/S0013-7944(00)00129-6
6.
Shahzamanian
,
M.
,
Parsazadeh
,
M.
, and
Wu
,
P.
,
2024
, “
Numerical and Analytical Analyses of the Formability and Fracture of AA7075-O Aluminum Sheets in Hemispherical Punch Tests
,”
Int. J. Solids Struct.
,
286–287
, p.
112558
.10.1016/j.ijsolstr.2023.112558
7.
Fries
,
T. P.
, and
Belytschko
,
T.
,
2010
, “
The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
253
304
.10.1002/nme.2914
8.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.10.1016/S0045-7825(96)01087-0
9.
Abaqus
,
V.
,
2014
, “
6.14 Documentation
,”
Dassault Systemes Simulia Corporation
,
651
.
10.
Zhang
,
Z.
,
Xu
,
J.
,
Nyhus
,
B.
, and
Østby
,
E.
,
2010
, “
SENT (Single Edge Notch Tension) Methodology for Pipeline Applications
,”
Proceedings of the 18th European Conference on Fracture
, Dresden, Germany, Aug. 29–Sept. 3.https://www.researchgate.net/publication/286833625_Sent_single_edge_notch_tesionmethodology_for_pipeline_applications
11.
Woo
,
J.
,
Kainat
,
M.
,
Okoloekwe
,
C.
,
Hassanien
,
S.
, and
Adeeb
,
S.
,
Enbridge Inc.
2019
, “
Integrity Analysis of Dented Pipelines Using Artificial Neural Networks
,”
Pipeline Sci. Technol.
,
3
(
2
), pp.
92
104
.10.28999/2514-541X-2019-3-2-92-104
12.
Kainat
,
M.
,
Lin
,
M.
,
Roger Cheng
,
J.
,
Martens
,
M.
, and
Adeeb
,
S.
,
2016
, “
Effects of the Initial Geometric Imperfections on the Buckling Behavior of High-Strength UOE Manufactured Steel Pipes
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051206
.10.1115/1.4032990
13.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2010
, “
Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1361
1376
.10.1016/j.soildyn.2010.06.011
14.
Qin
,
G.
, and
Cheng
,
Y. F.
,
2020
, “
Failure Pressure Prediction by Defect Assessment and Finite Element Modelling on Natural Gas Pipelines Under Cyclic Loading
,”
J. Natural Gas Sci. Eng.
,
81
, p.
103445
.10.1016/j.jngse.2020.103445
15.
Arumugam
,
T.
,
Karuppanan
,
S.
, and
Ovinis
,
M.
,
2020
, “
Finite Element Analyses of Corroded Pipeline With Single Defect Subjected to Internal Pressure and Axial Compressive Stress
,”
Mar. Struct.
,
72
, p.
102746
.10.1016/j.marstruc.2020.102746
16.
Shahzamanian
,
M. M.
,
Lloyd
,
D. J.
,
Wu
,
P. D.
, and
Xu
,
Z.
,
2020
, “
Study of Influence of Superimposed Hydrostatic Pressure on Bendability of Sheet Metals
,”
Eur. J. Mech.-A/Solids
,
85
, p.
104132
.10.1016/j.euromechsol.2020.104132
17.
Shahzamanian
,
M.
,
Lloyd
,
D.
, and
Wu
,
P.
,
2020
, “
Enhanced Bendability in Sheet Metal Produced by Cladding a Ductile Layer
,”
Mater. Today Commun.
,
23
, p.
100952
.10.1016/j.mtcomm.2020.100952
18.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
19.
Dolbow
,
J.
,
Moës
,
N.
, and
Belytschko
,
T.
,
2001
, “
An Extended Finite Element Method for Modeling Crack Growth With Frictional Contact
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
51–52
), pp.
6825
6846
.10.1016/S0045-7825(01)00260-2
20.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
21.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2019
, “
Burst Pressure Assessment of Corroded Pipelines Using Fracture Mechanics Criterion
,”
Eng. Failure Anal.
,
104
, pp.
139
153
.10.1016/j.engfailanal.2019.05.033
22.
Khoei
,
A. R.
,
2014
,
Extended Finite Element Method: Theory and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
23.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2004
, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
33–35
), pp.
3523
3540
.10.1016/j.cma.2003.12.041
24.
Bui
,
T. Q.
,
Hirose
,
S.
,
Zhang
,
C.
,
Rabczuk
,
T.
,
Wu
,
C.-T.
,
Saitoh
,
T.
, and
Lei
,
J.
,
2016
, “
Extended Isogeometric Analysis for Dynamic Fracture in Multiphase Piezoelectric/Piezomagnetic Composites
,”
Mech. Mater.
,
97
, pp.
135
163
.10.1016/j.mechmat.2016.03.001
25.
Hosseini-Toudeshky
,
H.
, and
Jamalian
,
M.
,
2015
, “
Simulation of Micromechanical Damage to Obtain Mechanical Properties of Bimodal Al Using XFEM
,”
Mech. Mater.
,
89
, pp.
229
240
.10.1016/j.mechmat.2015.06.015
26.
Zhang
,
Y.
,
Fan
,
M.
,
Xiao
,
Z.
, and
Zhang
,
W.
,
2016
, “
Fatigue Analysis on Offshore Pipelines With Embedded Cracks
,”
Ocean Eng.
,
117
, pp.
45
56
.10.1016/j.oceaneng.2016.03.038
27.
Okodi
,
A.
,
Lin
,
M.
,
Yoosef-Ghodsi
,
N.
,
Kainat
,
M.
,
Hassanien
,
S.
, and
Adeeb
,
S.
,
2020
, “
Crack Propagation and Burst Pressure of Longitudinally Cracked Pipelines Using Extended Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
184
, p.
104115
.10.1016/j.ijpvp.2020.104115
28.
Liu
,
X.
,
2017
, “
Numerical and Experimental Study on Critical Crack Tip Opening Dis-Placement of X80 Pipeline Steel
,”
Mechanika
,
23
(
2
), pp.
204
208
.10.5755/j01.mech.23.2.14535
29.
Kofiani
,
K.
,
Nonn
,
A.
, and
Wierzbicki
,
T.
,
2013
, “
New Calibration Method for High and Low Triaxiality and Validation on SENT Specimens of API X70
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
187
201
.10.1016/j.ijpvp.2013.07.004
30.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.10.1016/j.ijplas.2007.09.004
31.
Bai
,
Y.
,
2007
, “
Effect of Loading History on Necking and Fracture
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, UK
.http://hdl.handle.net/1721.1/43148
32.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.10.1007/s10704-009-9422-8
33.
Granum
,
H.
,
Morin
,
D.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2021
, “
Calibration of the Modified Mohr-Coulomb Fracture Model by Use of Localization Analyses for Three Tempers of an AA6016 Aluminium Alloy
,”
Int. J. Mech. Sci.
,
192
, p.
106122
.10.1016/j.ijmecsci.2020.106122
34.
Meng Lin
,
Y. L.
,
Salem
,
M.
,
Roger Cheng
,
J. J.
,
Adeeb
,
S.
, and
Kainat
,
M.
,
2020
, “
A Parametric Study of Variable Crack Initiaon Criterion in XFEM on Pipeline Steel
,”
ASME
Paper No. PVP2020-21664.10.1115/PVP2020-21664
35.
Johnson
,
G. R.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of Seventh Information Symposium Ballistics
, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.https://ia800102.us.archive.org/9/items/AConstitutiveModelAndDataForMetals/A%20constitutive%20model%20and%20data%20for%20metals_text.pdf
36.
Erice
,
B.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2018
, “
Stress-State and Strain-Rate Dependent Ductile Fracture of Dual and Complex Phase Steel
,”
Mech. Mater.
,
116
, pp.
11
32
.10.1016/j.mechmat.2017.07.020
37.
Cao
,
Y.
,
Zhen
,
Y.
,
Song
,
M.
,
Yi
,
H.
,
Li
,
F.
, and
Li
,
X.
,
2020
, “
Determination of Johnson–Cook Parameters and Evaluation of Charpy Impact Test Performance for X80 Pipeline Steel
,”
Int. J. Mech. Sci.
,
179
, p.
105627
.10.1016/j.ijmecsci.2020.105627
38.
Fudlailah
,
P.
, and
Paredes
,
M.
,
2020
, “
Fracture Behavior of X65 Q&T Seamless Pipeline Steel Under Different Strain Rates and Stress States
,”
ASME
Paper No. OMAE2020-18032.10.1115/OMAE2020-18032
39.
Kim
,
J.-S.
,
Kim
,
Y.-J.
,
Lee
,
M.-W.
,
Kim
,
K.-S.
, and
Shibanuma
,
K.
,
2021
, “
Finite Element Simulation of Drop-Weight Tear Test of API X80 at Ductile-Brittle Transition Temperatures
,”
Int. J. Mech. Sci.
,
191
, p.
106103
.10.1016/j.ijmecsci.2020.106103
40.
Chanda
,
S.
, and
Ru
,
C.
,
2018
, “
Temperature Effects on Fracture Toughness Parameters for Pipeline Steels
,”
Int. J. Steel Struct.
,
18
(
5
), pp.
1754
1760
.10.1007/s13296-018-0075-1
41.
Zhang
,
X. L.
,
Mi
,
Y. M.
,
Ji
,
T.
,
Xu
,
H. X.
,
Xie
,
Y. T.
, and
Shen
,
Y.
,
2010
, “
Study on the Dynamic Behaviors of X70 Pipeline Steel by Numerical Simulation
,”
Adv. Mater. Res., Trans. Tech.
,
97–101
, pp.
278
281
.10.4028/www.scientific.net/AMR.97-101.278
42.
Van den Abeele
,
F.
,
Peirs
,
J.
,
Verleysen
,
P.
,
Oikonomides
,
F.
, and
Van Wittenberghe
,
J.
,
2012
, “
Dynamic Behaviour of High Strength Pipeline Steel
,”
ASME
Paper No. IPC2012-90224.10.1115/IPC2012-90224
43.
Abaqus
,
2019
, Abaqus 6.19, Documentation,
Dassault Systemes, Providence, RI
.
44.
Oh
,
C.-S.
,
Kim
,
N.-H.
,
Kim
,
Y.-J.
,
Baek
,
J.-H.
,
Kim
,
Y.-P.
, and
Kim
,
W.-S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fracture Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
45.
Zhang
,
X.
,
Lin
,
M.
,
Okodi
,
A.
,
Tan
,
L.
,
Leung
,
J.
, and
Adeeb
,
S.
,
2021
, “
Numerical Analysis of API 5 L X42 and X52 Vintage Pipes With Cracks in Corrosion Defects Using Extended Finite Element Method
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p.
061302
.10.1115/1.4050988
46.
Larsson
,
R.
,
Razanica
,
S.
, and
Josefson
,
B. L.
,
2016
, “
Mesh Objective Continuum Damage Models for Ductile Fracture
,”
Int. J. Numer. Methods Eng.
,
106
(
10
), pp.
840
860
.10.1002/nme.5152
47.
Partovi
,
A.
,
Shahzamanian
,
M.
, and
Wu
,
P.
,
2020
, “
Study of Influence of Superimposed Hydrostatic Pressure on Ductility in Ring Compression Test
,”
J. Mater. Eng. Perform.
,
29
(
10
), pp.
6581
6590
.10.1007/s11665-020-05114-z
48.
Wang
,
X.
, and
Shi
,
J.
,
2013
, “
Validation of Johnson-Cook Plasticity and Damage Model Using Impact Experiment
,”
Int. J. Impact Eng.
,
60
, pp.
67
75
.10.1016/j.ijimpeng.2013.04.010
49.
Dabboussi
,
W.
, and
Nemes
,
J.
,
2005
, “
Modeling of Ductile Fracture Using the Dynamic Punch Test
,”
Int. J. Mech. Sci.
,
47
(
8
), pp.
1282
1299
.10.1016/j.ijmecsci.2005.01.015
50.
Jang
,
Y.-Y.
,
Kim
,
I.-J.
,
Huh
,
N.-S.
,
Kim
,
K.-S.
, and
Kim
,
Y.-P.
,
2019
, “
Numerical Investigation of the Transferability of Ductile Fracture Behavior Between Thin-Walled Surface-Cracked Pipe, Curved Wide Plate (CWP) and Single Edge Notched Tension (SENT) Specimens
,”
J. Mech. Sci. Technol.
,
33
(
9
), pp.
4233
4243
.10.1007/s12206-019-0820-1
51.
Tang
,
H.
,
Macia
,
M.
,
Minnaar
,
K.
,
Gioielli
,
P.
,
Kibey
,
S.
, and
Fairchild
,
D.
,
2010
, “
Development of the SENT Test for Strain-Based Design of Welded Pipelines
,”
ASME
Paper No. IPC2010-31590.10.1115/IPC2010-31590
52.
Yoon
,
S. H.
,
Ryu
,
T.-Y.
,
Kim
,
M. K.
,
Choi
,
J.-B.
, and
Kim
,
I.-J.
,
2019
, “
Development of GTN Model Parameters for Simulating Ductile Fracture Behavior of X 70 Carbon Steel SENT Specimens
,”
ASME
Paper No. PVP2019-93542.10.1115/PVP2019-93542
53.
Lin
,
M.
,
Agbo
,
S.
,
Duan
,
D.-M.
,
Cheng
,
J. R.
, and
Adeeb
,
S.
,
2020
, “
Simulation of Crack Propagation in API 5 L X52 Pressurized Pipes Using XFEM-Based Cohesive Segment Approach
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020009
.10.1061/(ASCE)PS.1949-1204.0000444
54.
Agbo
,
S.
,
Lin
,
M.
,
Ameli
,
I.
,
Imanpour
,
A.
,
Duan
,
D.-M.
,
Cheng
,
J. R.
, and
Adeeb
,
S.
,
2019
, “
Evaluation of the Effect of Internal Pressure and Flaw Size on the Tensile Strain Capacity of X42 Vintage Pipeline Using Damage Plasticity Model in Extended Finite Element Method (XFEM)
,”
ASME
Paper No. PVP2019-94005.10.1115/PVP2019-94005
55.
Zhang
,
X.
,
Okodi
,
A.
,
Tan
,
L.
,
Leung
,
J.
, and
Adeeb
,
S.
,
2020
, “
Failure Pressure Prediction of Crack in Corrosion Defects in 2D by Using XFEM
,”
ASME
Paper No. PVP2020-21046.10.1115/PVP2020-21046
56.
Liu
,
P.
,
Zhang
,
B.
, and
Zheng
,
J.
,
2012
, “
Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM
,”
J. Failure Anal. Prev.
,
12
(
6
), pp.
707
718
.10.1007/s11668-012-9623-8
57.
Riccio
,
A.
,
Caruso
,
U.
,
Raimondo
,
A.
, and
Sellitto
,
A.
,
2016
, “
Robustness of XFEM Method for the Simulation of Cracks Propagation in Fracture Mechanics Problems
,”
Am. J. Eng. Appl. Sci.
,
9
(
3
), pp.
599
610
.10.3844/ajeassp.2016.599.610
58.
Shahzamanian
,
M.
,
Xu
,
Z.
, and
Wu
,
P.
,
2023
, “
Scripts to Insert Cohesive Elements at the Interfaces Between Matrix and Precipitates With Irregular Shapes in Representative Volume Elements in ABAQUS
,”
Appl. Sci.
,
13
(
22
), p.
12281
.10.3390/app132212281
You do not currently have access to this content.