Abstract

A Fragility function, which defines the conditional probability of exceeding a limit state given an intensity measure of the earthquake, is an essential ingredient of modern approaches like the performance-based earthquake engineering methodology. However, the generation of such curves generally entails a high computational effort to account for epistemic and aleatory uncertainties associated with structural analysis and seismic load. Moreover, a certain probability function, such as the log-normal distribution, is usually assumed in order to carry out the conditional probability of failure of a structure, without any prior information on the correct probability distribution. In this paper, an artificial neural network model is proposed to carry out fragility curves in order to avoid the aforementioned problems. In this respect, this paper investigates the following aspects: (i) implementation of an efficient algorithm to select proper seismic intensity measures as inputs for artificial neural network, (ii) derivation of surrogate models by using the artificial neural network techniques, (iii) computation of fragility curves by means Monte Carlo Simulations, and (iv) validation phase.

References

1.
Belleri
,
A.
,
Torquati
,
M.
,
Riva
,
P.
, and
Nascimbene
,
R.
,
2015
, “
Vulnerability Assessment and Retrofit Solutions of Precast Industrial Structures
,”
Earthquake Struct.
,
8
(
3
), pp.
801
820
.10.12989/eas.2015.8.3.801
2.
Kalemi
,
B.
,
Farhan
,
M.
, and
Corritore
,
D.
,
2019
, “
Sliding Response of Unanchored Steel Storage Tanks Subjected to Seismic Loading
,”
ASME
Paper No. PVP2019-93310. 10.1115/PVP2019-93310
3.
Butenweg
,
C.
,
Bursi
,
O. S.
,
Paolacci
,
F.
,
Marinkovic
,
’ M.
,
Lanese
,
I.
,
Nardin
,
C.
, and
Quinci
,
G.
,
2021
, “
Seismic Performance of an Industrial Multi-Storey Frame Structure With Process Equipment Subjected to Shake Table Testing
,”
Eng. Struct.
,
243
, p.
112681
.10.1016/j.engstruct.2021.112681
4.
Brunesi
,
E.
,
Nascimbene
,
R.
, and
Peloso
,
S.
,
2020
, “
Evaluation of the Seismic Response of Precast Wall Connections: Experimental Observations and Numerical Modeling
,”
J. Earthquake Eng.
,
24
(
7
), pp.
1057
1082
.10.1080/13632469.2018.1469440
5.
Alessandri
,
S.
,
Caputo
,
A. C.
,
Corritore
,
D.
,
Giannini
,
R.
,
Paolacci
,
F.
, and
Phan
,
H. N.
,
2018
, “
Probabilistic Risk Analysis of Process Plants Under Seismic Loading Based on Monte Carlo Simulations
,”
J. Loss Prev. Process Ind.
,
53
, pp.
136
148
.10.1016/j.jlp.2017.12.013
6.
Brunesi
,
E.
,
Nascimbene
,
R.
,
Pagani
,
M.
, and
Beilic
,
D.
,
2015
, “
Seismic Performance of Storage Steel Tanks During the May 2012 Emilia, Italy, Earthquakes
,”
J. Perform. Constr. Facil.
,
29
(
5
), p.
04014137
.10.1061/(ASCE)CF.1943-5509.0000628
7.
Cruz
,
A. M.
,
Steinberg
,
L. J.
,
Vetere Arellano
,
A.
,
Nordvik
,
J.-P.
, and
Pisano
,
F.
,
2004
,
State of the Art in Natech Risk Management
,
European Commission Joint Research Centre
,
ISPRA
, Ispra VA, Italy.
8.
Mesa-Gomez
,
A.
,
Casal
,
J.
, and
Muñoz
,
F.
,
2020
, “
Risk Analysis in Natech Events: State of the Art
,”
J. Loss Prev. Process Ind.
,
64
, p.
104071
.10.1016/j.jlp.2020.104071
9.
NIST
,
2018
, “
Recommendations for Improved Seismic Performance of Non-Structural Components
,” National Institute of Standards and Technology, Gaithersburg, MD, No.
NIST/GCR 18-917-43
.https://www.govinfo.gov/app/details/GOVPUB-C13-def51328e0b6d5e4cd120d8ef70c4494
10.
Braconnier
,
T.
,
Ferrier
,
M.
,
Jouhaud
,
J.-C.
,
Montagnac
,
M.
, and
Sagaut
,
P.
,
2011
, “
Towards an Adaptive Pod/SVD Surrogate Model for Aeronautic Design
,”
Comput. Fluids
,
40
(
1
), pp.
195
209
.10.1016/j.compfluid.2010.09.002
11.
Phan
,
H. N.
,
Paolacci
,
F.
,
Di Filippo
,
R.
, and
Bursi
,
O. S.
,
2020
, “
Seismic Vulnerability of Aboveground Storage Tanks With Unanchored Support Conditions for na-Tech Risks Based on Gaussian Process Regression
,”
Bull. Earthquake Eng.
,
18
(
15
), pp.
6883
6906
.10.1007/s10518-020-00960-7
12.
Phan
,
H. N.
,
Paolacci
,
F.
,
Corritore
,
D.
,
Tondini
,
N.
, and
Bursi
,
O. S.
,
2019
, “
A Kriging-Based Surrogate Model for Seismic Fragility Analysis of Unanchored Storage Tanks
,”
ASME
Paper No. PVP2019-93259. 10.1115/PVP2019-93259
13.
Xie
,
Y.
,
Sichani
,
M. E.
,
Padgett
,
J. E.
, and
DesRoches
,
R.
,
2020
, “
The Promise of Implementing Machine Learning in Earthquake Engineering: A State-of-the-Art Review
,”
Earthquake Spectra
,
36
(
4
), pp.
1769
1801
.10.1177/8755293020919419
14.
Giovanis
,
D. G.
,
Fragiadakis
,
M.
, and
Papadopoulos
,
V.
,
2016
, “
Epistemic Uncertainty Assessment Using Incremental Dynamic Analysis and Neural Networks
,”
Bull. Earthquake Eng.
,
14
(
2
), pp.
529
547
.10.1007/s10518-015-9838-7
15.
Wang
,
Z.
,
Pedroni
,
N.
,
Zentner
,
I.
, and
Zio
,
E.
,
2018
, “
Seismic Fragility Analysis With Artificial Neural Networks: Application to Nuclear Power Plant Equipment
,”
Eng. Struct.
,
162
, pp.
213
225
.10.1016/j.engstruct.2018.02.024
16.
SERA Project, 2020, “
European Centre for Training and Research in Earthquake Engineering
,” accessed Aug. 30, 2023, www.eucentre.it
17.
Giannini
,
R.
,
Paolacci
,
F.
,
Phan
,
H. N.
,
Corritore
,
D.
, and
Quinci
,
G.
,
2022
, “
A Novel Framework for Seismic Risk Assessment of Structures
,”
Earthquake Eng. Struct. Dyn.
,
51
(
14
), pp.
3416
3433
.10.1002/eqe.3729
18.
Quinci
,
G.
,
Phan
,
N.
, and
Paolacci
,
F.
,
2022
, “
On the Use of Artificial Neural Network Technique for Seismic Fragility Analysis of a Three-Dimensional Industrial Frame
,”
ASME
Paper No. PVP2022-83874. 10.1115/PVP2022-83874
19.
Mangalathu
,
S.
, and
Jeon
,
J. S.
,
2019
, “
Stripebased Fragility Analysis of Multispan Concrete Bridge Classes Using Machine Learning Techniques
,”
Earthquake Eng. Struct. Dyn.
,
48
(
11
), pp.
1238
1255
.10.1002/eqe.3183
20.
Xu
,
Y.
,
Kohtz
,
S.
,
Boakye
,
J.
,
Gardoni
,
P.
, and
Wang
,
P.
,
2023
, “
Physics-Informed Machine Learning for Reliability and Systems Safety Applications: State of the Art and Challenges
,”
Reliab. Eng. Syst. Safety
,
230
, p.
108900
.10.1016/j.ress.2022.108900
21.
Phan
,
H. N.
,
Paolacci
,
F.
, and
Alessandri
,
S.
,
2019
, “
Enhanced Seismic Fragility Analysis of Unanchored Steel Storage Tanks Accounting for Uncertain Modeling Parameters
,”
ASME J. Pressure Vessel Technol.
,
141
(
1
), p.
010903
.10.1115/1.4039635
22.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
.10.1016/j.compeleceng.2013.11.024
23.
Nardin
,
C.
,
Bursi
,
O. S.
,
Paolacci
,
F.
,
Pavese
,
A.
, and
Quinci
,
G.
,
2022
, “
Experimental Performance of a Multi-Storey Braced Frame Structure With Nonstructural Industrial Components Subjected to Synthetic Ground Motions
,”
Earthquake Eng. Struct. Dyn.
,
51
(
9
), pp.
2113
2136
.10.1002/eqe.3656
24.
The MathWorks Inc.
,
2019
, “
MATLAB, version 9.7.0 (R2019a)
,” The MathWorks Inc., Natick, MA.
25.
Paolacci, F., Giannini, R., Nam, P. H., Corritore, D., and Quinci, G.,
2023
, “Scores: An Algorithm for Records Selection to Employ in Seismic Risk and Resilience Analysis,”
Procedia Struct. Integr.
, 44, pp. 307–314.10.1016/j.prostr.2023.01.040
26.
MIDASGen
2022
, “Gen 2022 (v2.1),” MIDAS Information Technology Co., Bundang-gu, Seongnam, Gyeonggi, Korea.
27.
Paolacci
,
F.
,
Reza
,
M. S.
, and
Bursi
,
O. S.
,
2011
, “
Seismic Analysis and Component Design of Refinery Piping Systems
,”
3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
, Corfu Island, May 26–28, pp.
25
28
.https://www.researchgate.net/publication/232770195_SEISMIC_ANALYSIS_AND_COMPONENT_DESIGN_OF_REFINERY_PIPING_SYSTEMS
28.
Edwards
,
A. W.
,
2005
, “
Ra Fischer, Statistical Methods for Research Workers, (1925)
,”
In Landmark Writings in Western Mathematics 1640-1940
,
Elsevier
, Amsterdam, The Netherlands, pp.
856
870
.
29.
Baker
,
J.
,
2007
, “
Probabilistic Structural Response Assessment Using Vector-Valued Intensity Measures
,”
Bull. Seismological Soc. Am.
,
36
(
13
), pp.
1861
1883
.10.1002/eqe.700
30.
ASCE/SEI
,
2016
, “
Seismic Analysis of SafetyRelated Nuclear Structures
,” Standard No. 4‐16.
31.
Vathi
,
M.
,
Karamanos
,
S.
,
Kapogiannis
,
I. A.
, and
Spiliopoulos
,
K. V.
,
2017
, “
Performance Criteria for Liquid Storage Tanks and Piping Systems Subjected to Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051801
.10.1115/1.4036916
32.
EN1998-1-1
,
2022
, “
Eurocode 8 - Design of Structures for Earthquake Resistance - Part 1-1: General Rules and Seismic Action European Committee for Standardization
,”
European Committee for Standardization
, Brussels, Belgium.https://www.phd.eng.br/wpcontent/uploads/2015/02/en.1998.1.2004.pdf
You do not currently have access to this content.