Abstract

This study dealt with the capacity of the inline technique to upgrade steel-pipe-based hydraulic systems with respect to magnitude attenuation and pressure-wave oscillation period expansion. This technique consisted in replacing a short-section of the induced transient pressure region with another of plastic material type, including high- or low-density polyethylene (HDPE or LDPE). The method of characteristics was implemented to discretize the extended one-dimensional water-Hammer Equations, embedding the Ramos et al. formulation. The comparison of the numerical solution with the observed data, quoted in the literature, and alternative numerical solution demonstrated the accuracy of the developed solver. The test case addressed a transient flow involving the cavitation onset. Results showed that the HDPE plastic-short-section-based layout of the inline technique provided the best tradeoff between magnitude attenuation and pressure-wave oscillation period expansion, in comparison with the LDPE plastic-short-section-based layout and the HDPE or LDPE material-based main-pipe systems.

References

1.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A.
,
2006
, “
Water-Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
2.
Triki
,
A.
,
2021
, “
Comparative Assessment of the Inline and Branching Design Strategies Based on the Compound-Technique
,”
Water Infrastruct. Ecosystems Soc.-AQUA
,
70
(
2
), pp.
155
170
.10.2166/aqua.2015.081
3.
Triki
,
A.
, and
Essaidi
,
B.
,
2022
, “
Investigation of Pump Failure-Induced Waterhammer Waves: A Case Study
,”
ASME J. Pressure Vessel Technol.
,
144
(
2
), p.
021403
.10.1115/1.4051512
4.
Essaidi
,
B.
, and
Triki
,
A.
,
2021
, “
On the Transient Flow Behavior in Pressurized Plastic Pipe –Based Water Supply Systems
,”
Water Infrastruct. Ecosyst. Soc.-AQUA
,
70
(
1
), pp.
67
76
.10.2166/aqua.2020.051
5.
BenIffa
,
R.
, and
Triki
,
A.
,
2019
, “
Assessment of Inline Techniques -Based Water-Hammer Control Strategy in Water Supply Systems
,”
J. Water Supply: Res. Technol.-AQUA
,
68
(
7
), pp.
562
572
.10.2166/aqua.2019.095
6.
Fersi
,
M.
, and
Triki
,
A.
,
2019
, “
Alternative Design Strategy for Water-Hammer Control in Pressurized-Pipe Flow
,”
International Conference on Acoustics and Vibration, ICAV 2018: Advances in Acoustics and Vibration II (Applied Condition Monitoring)
, Vol.
13
,
Springer
,
Cham, Switzerland
, pp.
157
165
.10.1007/978-3-319-94616-0_16
7.
Fersi
,
M.
, and
Triki
,
A.
,
2019
, “
Investigation on Redesigning Strategies for Water-Hammer Control in Pressurized-Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
141
(
2
), p.
021301
.10.1115/1.4040136
8.
Fersi
,
M.
, and
Triki
,
A.
,
2020
, “
Investigating the Inline Design Measure in Existing Pressurized Steel Piping Systems
,”
International Conference on Design and Modeling of Mechanical Systems - IV CMSM 2020
(Lecture Notes in Mechanical Engineering),
Springer
,
Cham, Switzerland
, pp.
74
82
.10.1007/978-3-030-27146-6_9
9.
Triki
,
A.
,
2016
, “
Water-Hammer Control in Pressurized-Pipe Flow Using an in-Line Polymeric Short-Section
,”
Acta Mech.
,
227
(
3
), pp.
777
793
.10.1007/s00707-015-1493-1
10.
Triki
,
A.
,
2018
, “
Dual-Technique Based Inline Design Strategy for Water-Hammer Control in Pressurized-Pipe Flow
,”
Acta Mech.
,
229
(
3
), pp.
2019
2039
.10.1007/s00707-017-2085-z
11.
Triki
,
A.
,
2018
, “
Further Investigation on Water-Hammer Control Inline Strategy in Water-Supply Systems
,”
J. Water Supply Res. Technol.-AQUA
,
67
(
1
), pp.
30
43
.10.2166/aqua.2017.073
12.
Triki
,
A.
, and
Fersi
,
M.
,
2018
, “
Further Investigation on the Water-Hammer Control Branching Strategy in Pressurized Steel-Piping Systems
,”
Int. J. Pressure Vessels Pip
ing,
165
, pp.
135
144
.10.1061/(ASCE)PS.1949- 1204.0000277
13.
Triki
,
A.
, and
Trabelsi
,
M.
,
2021
, “
On the in-Series and Branching Dual-Technique - Based Water-Hammer Control Strategy
,”
Urban Water J.
,
18
(
8
), pp.
631
639
.10.1080/1573062X.2021.1919722
14.
Triki
,
A.
,
2017
, “
Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock
,”
J. Pipeline Syst. Eng. Pract.
,
8
(
4
), p.
04017024
.10.1061/(ASCE)PS.1949-1204.0000277
15.
BenAmira
,
W.
, and
Triki
,
A.
,
2021
, “
Benchmarking the Dual and Compound Techniques -Based Branching Design Strategy Used for Upgrading of Hydraulic Systems
,”
ASME J. Pressure Vessel Technol.
,
143
(
2
), p.
021701
.10.1115/1.4049875
16.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
, New York.
17.
Ramos
,
H.
,
Covas
,
D.
,
Borga
,
A.
, and
Loureiro
,
D.
,
2004
, “
Surge Damping Analysis in Pipe Systems: Modelling and Experiments
,”
J. Hydraul. Res.
,
42
(
4
), pp.
413
425
.10.1080/00221686.2004.9728407
18.
Malesińska
,
A.
,
Rogulski
,
M. W.
,
Puntorieri
,
P.
,
Barbaro
,
G.
, and
Kowalska
,
B. E.
,
2020
, “
Equivalent Celerity in Water Hammer for Serially Connected Pipelines
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
1
), p.
04019039
.10.1061/(ASCE)PS.1949-1204.0000411
19.
Covas
,
D.
,
Stoianov
,
I.
,
Mano
,
J. F.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2005
, “
The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients. Part II-Model Development, Calibration and Verification
,”
J. Hydraul. Res.
,
43
(
1
), pp.
56
70
.10.1080/00221680509500111
20.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.