Abstract

Test specimens used to calibrate damage-mechanics models are designed to produce a range of stress triaxialities and Lode angles to accurately capture the fracture envelope of the metal. Many of these specimens have lower constraint than deeply notched fracture specimens that undergo stable tearing and have high constraint at the crack tip. Often just one or two fracture geometries are used to calibrate the model. In this work, the ability of a damage model to capture variability associated with constraint at a crack tip, particularly for crack initiation, is assessed. A recent round-robin (Wilkowski et al., 2019, “1st Round-Robin for Exploring the Effects of Constraint on Fracture Initiation Toughness for Surface-Cracked Pipe/Fittings,” Panel Session held in Conjunction With ASME PVP2019, San Antonio, TX) study on the initiation toughness of X80 provided data for five fracture specimens in which crack tip constraint varied. As a damage model for X80 was not available, the well-calibrated modified Mohr–Coulomb (MMC) damage models from literature for X65 and X70 were used as a starting point for the model. Experimental data from the single compact tension C(T) specimen were used to slightly modify the X65 and X70 models to capture the X80 fracture response. The MMC damage model was applied in finite element analysis (FEA) to simulate both the crack initiation and propagation responses of single-edge-notched-tension (SENT) and surface-cracked pipe specimens. Except for a low J-integral at initiation predicted for the C(T) specimen, the remaining predicted responses for force, pressure, and initiation were in good agreement with the experimental data provided in the round-robin.

References

1.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Overview Article: Failure of Metals I: Brittle and Ductile Fracture
,”
Acta Mater.
,
107
, pp.
424
483
.10.1016/j.actamat.2015.12.034
2.
Mohr
,
D.
, and
Marcadet
,
S. J.
,
2015
, “
Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities
,”
Int. J. Solids Struct.
,
67–68
, pp.
40
55
.10.1016/j.ijsolstr.2015.02.024
3.
Xue
,
L.
, and
Wierzbicki
,
T.
,
2008
, “
Ductile Fracture Initiation and Propagation Modeling Using Damage Plasticity Theory
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3276
3293
.10.1016/j.engfracmech.2007.08.012
4.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr-Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.10.1007/s10704-009-9422-8
5.
Šebek
,
F.
,
Kubik
,
P.
,
Hůlka
,
J.
, and
Petruška
,
J.
,
2016
, “
Strain Hardening Exponent Role in Phenomenological Ductile Fracture Criteria
,”
Eur. J. Mech. A-Solids
,
57
, pp.
146
164
.10.1016/j.euromechsol.2015.12.006
6.
Xue
,
L.
, and
Wierzbicki
,
T.
,
2009
, “
Numerical Simulation of Fracture Mode Transition in Ductile Plates
,”
Int. J. Solids Struct.
,
46
(
6
), pp.
1423
1435
.10.1016/j.ijsolstr.2008.11.009
7.
Simha
,
C. H. M.
,
Xu
,
S.
, and
Tyson
,
W. R.
,
2014
, “
Non-Local Phenomenological Damage-Mechanics-Based Modeling of the Drop-Weight Tear Test
,”
Eng. Fract. Mech.
,
118
, pp.
66
82
.10.1016/j.engfracmech.2014.01.009
8.
Paredes
,
M.
,
Wierzbicki
,
T.
, and
Zelenak
,
P.
,
2016
, “
Prediction of Crack Initiation and Propagation in X70 Pipeline Steels
,”
Eng. Fract. Mech.
,
168
, pp.
92
111
.10.1016/j.engfracmech.2016.10.006
9.
Paredes
,
M.
,
Sarzosa
,
D. F. B.
,
Savioli
,
R.
,
Wierzbicki
,
T.
,
Jeong
,
D. Y.
, and
Tyrell
,
D. C.
,
2018
, “
Ductile Tearing Analysis of TC128 Tank Car Steel Under Mode I Loading Condition
,”
Theor. Appl. Fract. Mech.
,
96
, pp.
658
675
.10.1016/j.tafmec.2017.10.006
10.
Paredes
,
M.
,
Lian
,
J.
,
Wierzbicki
,
T.
,
Cristea
,
M. E.
,
Münstermann
,
S.
, and
Darcis
,
P.
,
2018
, “
Modeling of Plasticity and Fracture Behavior of X65 Steels: Seam Weld and Seamless Pipes
,”
Int. J. Fract.
,
213
(
1
), pp.
17
36
.10.1007/s10704-018-0303-x
11.
Keim
,
V.
,
Paredes
,
M.
,
Nonn
,
A.
, and
Münstermann
,
S.
,
2020
, “
FSI-Simulation of Ductile Fracture Propagation and Arrest in Pipelines: Comparison With Existing Data of Full-Scale Burst Tests
,”
Int. J. Pressure Vessels Piping
,
182
, p.
104067
.10.1016/j.ijpvp.2020.104067
12.
Wilkowski
,
G.
,
Kalyanam
,
S.
,
Brust
,
F. W.
, and
Hill
,
L.
,
2019
, “
1st Round-Robin for Exploring the Effects of Constraint on Fracture Initiation Toughness for Surface-Cracked Pipe/Fittings
,” Panel Session held in Conjunction With ASME PVP2019, San Antonio, TX.
13.
Saneian
,
M.
,
Han
,
P.
,
Jin
,
S.
, and
Bai
,
Y.
,
2020
, “
Fracture Response of Steel Pipelines Under Combined Tension and Bending
,”
Thin-Walled Struct.
,
155
, p.
106987
.10.1016/j.tws.2020.106987
14.
Cuenca
,
C. A.
, and
Sarzosa
,
D. F. B.
,
2020
, “
Modeling Ductile Fracture Using Critical Strain Locus and Softening Law for a Typical Pressure Vessel Steel
,”
Int. J. Pressure Vessels Piping
,
183
, p.
104061
.10.1016/j.ijpvp.2020.104081
15.
Novokshanov
,
D.
,
Döbereiner
,
B.
,
Sharaf
,
M.
,
Münstermann
,
S.
, and
Lian
,
J.
,
2015
, “
A New Model for Upper Shelf Impact Toughness Assessment With a Computationally Efficient Parameter Identification Algorithm
,”
Eng. Fract. Mech.
,
148
, pp.
281
303
.10.1016/j.engfracmech.2015.07.069
16.
Simha
,
C. H. M.
, and
Williams
,
B. W.
,
2016
, “
Modeling Failure of Ti-6Al-4V Using Damage Mechanics Incorporating Effects of Anisotropy, Rate and Temperature on Strength
,”
Int. J. Fract.
,
198
(
1–2
), pp.
101
115
.10.1007/s10704-016-0099-5
17.
Xue
,
J.
,
Williams
,
B.
,
Xu
,
S.
, and
Tyson
,
W. R.
,
2020
, “
Finite Element Analysis to Investigate the Effect of Loading Modes on the CTOA of DWTT Specimens
,”
Procedia Struct. Integr.
,
28
pp.
1047
1054
.10.1016/j.prostr.2020.11.120
18.
Xue
,
J.
,
Williams
,
B.
,
Xu
,
S.
, and
Tyson
,
W. R.
,
2021
, “
Finite Element Analysis to Investigate the Effect of Geometries of DWW Specimens on the CTOA
,”
ASME
Paper No. PVP2021-62285.10.1115/PVP2021-62285
19.
Sun
,
J. S.
,
Lee
,
K. H.
, and
Lee
,
H. P.
,
2000
, “
Comparison of Implicit and Explicit Finite Element Methods for Dynamic Problems
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
110
118
.10.1016/S0924-0136(00)00580-X
20.
Shen
,
G.
,
Gianetto
,
J. A.
, and
Tyson
,
W. R.
,
2009
, “
Measurement of J-R Curves Using Single-Specimen Technique on Clamped SE(T) Specimens
,”
Proceeding of the 19th International Offshore and Polar Engineering Conference
, Osaka, Japan, July 21–26, pp. 92–99, Paper No. ISOPE-I-09-150.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE09/All-ISOPE09/ISOPE-I-09-150/7549
21.
Pussegoda
,
N.
,
Tiku
,
S.
, and
Tyson
,
B.
,
2014
, “
Test Protocol: Measurement of Crack Tip Opening Displacement (CTOD) and J-Fracture Resistance Curves Using Single-Edge Notched Tension (SENT) Specimens
,” BMT Fleet Technology Limited, Ottawa, ON, Canada, Document No. 30166-001 (Rev. 01).
22.
Shih
,
C. F.
,
1983
, “
Tables of Hutchinson-Rice-Rosengren Singular Field Quantities
,”
Materials Research Laboratory, Brown University
, Providence, RI, Report No. MRL E-147.
23.
BS
,
2013
, “
Guide to Methods for Assessing the Acceptability of Imperfections in Metallic Structures
,”
British Standards Institution
,
London
, UK, Standard No. BS 7910:2013.
24.
CSA
,
2015
, “
Oil and Gas Pipeline Systems, Annex K: Standards of Acceptability for Circumferential Pipe Butt Welds Based Upon Fracture Mechanics Principles
,”
Canadian Standards Association (CSA)
, Mississiauga, ON, Canada, Standard No. CSA Z662-15.
25.
API,
2005
, “
Welding of Pipelines and Related Facilities
,” 20th ed.,
API Publishing Services
,
Washington, DC
, Standard No. 1104.
26.
ASTM,
2014
, “
Standard Test Method for Measurement of Fracture Toughness
,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM E1820-13.
27.
Kumar
,
V.
,
German
,
M. D.
, and
Shih
,
C. F.
,
1981
, “
An Engineering Approach for Elastic-Plastic Fracture Analysis
,”
Electric Power Research Institute
,
Palo Alto, CA
, EPRI Report No. NP-1931.
28.
Mohr
,
W.
,
2003
, “
Strain-Based Design of Pipelines
,”
EWI, Columbus
,
OH
, EWI Report, Project No. 45892GTH.
29.
Xu
,
J.
,
Zhang
,
Z. L.
,
Østby
,
E.
,
Nyhus
,
B.
, and
Sun
,
D. B.
,
2009
, “
Effects of Crack Depth and Specimen Size on Ductile Crack Growth of SENT and SENB Specimens for Fracture Mechanics Evaluation of Pipeline Steels
,”
Int. J. Pressure Vessels Piping
,
86
(
12
), pp.
787
797
.10.1016/j.ijpvp.2009.12.004
You do not currently have access to this content.