Abstract

The prediction of gas and liquid leak rates through packed glands is overlooked and the very few studies available in the literature focus on the packing axial stress distribution. For better prediction of leakage, the change of porosity with length due to this nonuniform axial stress must be accounted for. Our previous theoretical model on leakage predictions are based on uniform capillaries. In this paper, a new model that accounts for the change of the capillary diameter with the axial stress for gaseous leak and a straight capillary model for liquid leaks are developed. The first slip flow condition is used to predict gas and liquid flow considering straight capillary model and a nonuniform capillary model the area of which dependents on the axial stress in the packing rings. An approach that uses an analytical-computational methodology based on the number and the size of pores obtained experimentally is adopted to predict gas and liquid leak rates in both the uniform and nonuniform compressed packed gland models. The Navier–Stokes equations associated with slip boundary condition at the wall are used to predict leakage. Experimental tests with helium, argon, nitrogen, and air for gazes and water and kerosene for liquids are used to validate the models. The porosity parameters characterization is conducted experimentally with a reference gas, namely, helium at different gland stresses and pressures.

References

1.
Hutchins
,
W. C.
,
1962
, “
Leak Test Specifications
,”
Instruments and Control Systems
, 35, pp.
107
109
.
2.
Baumann
,
H.
,
1966
, “
Should a Control Valve Leak?
,”
Instruments and Control Systems
,
39
, pp.
111
115
.
3.
Abrahimzadeh
,
J.
, and
Steinke
,
J.
,
2013
, “
Fugitive Emissions Experimental Measurements and Equivalency
,”
17th International Conference & Exhibition on Liquefied Natural Gas—LNG 17
, Houston, TX, Apr. 16–19, pp.
1
9
.https://dokumen.tips/documents/fugitive-emissionexperimental-measurements-and-equivalency.html
4.
Reeves
,
D. W.
,
Ross
,
J. B.
, and
Wasielewski
,
M.
,
2005
, “
Assessing Fugitive Emissions Performance in Valves and Packing
,”
Valve World
, Shanghai, China, pp.
60
74
.
5.
Harrison
,
D.
,
2004
, “
Valve Fugitive Emission Measurement Standards
,”
Seal. Technol.
,
2004
(
2
), pp.
9
12
.10.1016/S1350-4789(04)00050-9
6.
ISO
, 2015, “
Industrial Valves-Measurement, Test and Qualification Procedure for Fugitive Emissions-Part:1 Classification System and Qualification Procedures for Type Testing of Valves
,” ISO, Geneva, Switzerland, Standard No.
ISO-15848-1
.https://www.iso.org/standard/61441.html
7.
A. P. Industries
, “
Type Testing of Process Valve Packing for Fugitive Emissions
,”
API
, Grapevine, TX, Standard No. API-622.
8.
Aweimer
,
A. S. O.
, and
Bouzid
,
A.
,
2019
, “
Evaluation of Interfacial and Permeation Leaks in Gaskets and Compression Packing
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
1
), p. 011013.10.1115/1.4041691
9.
Schaaf
,
M.
, and
Schoeckle
,
F.
,
2009
, “
Technical Approach for the Reduction of Fugitive Emissions
,”
ASME
Paper No. PVP 2009-78125.10.1115/2009-78125
10.
Jolly
,
P.
, and
Marchand
,
L.
,
2009
, “
Leakage Predictions for Static Gasket Based on the Porous Media Theory
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021203
.10.1115/1.3008031
11.
Masi
,
V.
,
Bouzid
,
A.
, and
Derenne
,
1998
, “
Correlation Between Gases and Mass Leak Rate of Gasketing Materials
,”
1998 ASME/JSME PVP Conference
, PVP Vol. 367, Analysis of Bolted Joints, San Diego, CA, July 26–30, pp. 17–24.https://www.researchgate.net/publication/297809385_Correlation_between_gases_and_mass_leak_rate_of_gasketing_materials
12.
Diany
,
M.
, and
Bouzid
,
A.
,
2009
, “
Analytical Evaluation of Stresses and Displacements of Stuffing-Box Packing Based on a Flexibility Analysis
,”
Tribol. Int.
,
42
(
6
), pp.
980
986
.10.1016/j.triboint.2009.02.002
13.
Veiga
,
J. C.
,
Cipolatti
,
C.
,
Girão
,
C.
,
Ascenco
,
L.
, and
Castro
,
F.
,
2008
, “
Valve Packings Seating Stress
,”
ASME
Paper No. PVP2008-61214.10.1115/PVP2008-61214
14.
Veiga
,
J.
,
Girão
,
C. D.
, and
Cipolatti
,
C. F.
,
2009
, “
The Influence of Different Braided Packing Materials and Number of Rings on Stem Torque and Sealability
,”
ASME
Paper No. PVP 2009-77467.10.1115/PVP 2009-77467
15.
Nesbitt
,
B.
,
2011
,
Handbook of Valves and Actuators: Valves Manual International
,
Elsevier
,
Oxford, UK
.
16.
Diany
,
M.
, and
Bouzid
,
A.
,
2011
, “
An Experimental-Numerical Procedure for Stuffing Box Packing Characterization and Leak Tests
,”
ASME J. Tribol.
,
133
(
1
), p.
012201
.10.1115/1.4002929
17.
Kazeminia
,
M.
, and
Bouzid
,
A.
,
2016
, “
Predicting Leakage in Packed Stuffing Boxes
,”
Procceding of the 23rd International Conference on Fluid Sealing Manchester
, Manchester, UK, Mar. 2–3, pp.
45
59
.
18.
Aweimer
,
A. S. O.
,
Bouzid
,
A.
, and
Kazeminia
,
M.
,
2019
, “
Predicting Leak Rate Through Valve Stem Packing in Nuclear Applications
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
1
), p.
011009
.10.1115/1.4040493
19.
Kockelmann
,
H.
,
Bartonicek
,
J.
,
Roos
,
E.
,
Hahn
,
R.
, and
Ottens
,
W.
,
2009
, “
Long Term Behaviour of Stuffing Box Packings Under the Influence of Fluids at High Temperature
,”
ASME
Paper No. PVP2009-77059.10.1115/PVP2009-77059
20.
McGrew
,
J.
, and
McHugh
,
J.
,
1965
, “
Analysis and Test of the Screw Seal in Laminar and Turbulent Operation
,”
ASME J. Basic Eng.
,
87
(
1
), pp.
153
162
.10.1115/1.3650492
21.
Bauer
,
P.
,
1965
,
Investigation of Leakage and Sealing Parameters
,
IIT Research Institute
, Chicago, IL, Report No. AFRPL-TR-65-153.
22.
Vermes
,
G. Z.
,
1961
, “
A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem
,”
ASME J. Eng. Power
,
83
(
2
), pp.
161
169
.10.1115/1.3673158
23.
Huang
,
P.
, and
Breuer
,
K. S.
,
2007
, “
Direct Measurement of Slip Length in Electrolyte Solutions
,”
J. Phys. Fluids
,
19
(
2
), p.
028104
.10.1063/1.2539829
24.
Lauga
,
E.
, and
Squires
,
T. M.
,
2005
, “
Brownian Motion Near A Partial-Slip Boundary: A Local Probe of the No-Slip Condition
,”
Phys. Fluids
,
17
(
10
), p.
103102
.10.1063/1.2083748
25.
Pit
,
R.
,
Hervet
,
H.
, and
Leger
,
L.
,
2000
, “
Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces
,”
Phys. Rev. Lett.
,
85
(
5
), pp.
980
983
.10.1103/PhysRevLett.85.980
26.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
Springer
,
New York
.
27.
Munson-McGee
,
S. H.
,
2002
, “
An Approximate Analytical Solution for the Fluid Dynamics of Laminar Flow in a Porous Tube
,”
J. Mem. Sci.
,
197
(
1–2
), pp.
223
230
.10.1016/S0376-7388(01)00634-2
28.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2016
, “
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,”
Single-Phase Gas Flow in Microchannels
,
Elsevier
,
New York
, Chap.
2
.
29.
Diany
,
M.
, and
Bouzid
,
A.
,
2009
, “
Short Term Relaxation Modeling of Valve Stem Packings
,”
ASME J. Tribol.
,
131
(
3
), p.
032201
.10.1115/1.3118787
30.
Kazeminia
,
M.
, and
Bouzid
,
A.
,
2014
, “
Effect of Tapered Housing on the Axial Stress Distribution in a Stuffing Box Packing
,”
Int. J. Adv. Mech. Aeronaut. Eng. IJAMAE
,
1
(
3
), pp.
115
120
.10.15224/978-1-63248-022-4-44
31.
Choi
,
C.-H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
J. Phys. Fluids
,
15
(
10
), pp.
2897
2902
.10.1063/1.1605425
32.
Grine
,
L.
, and
Bouzid
,
A.
,
2011
, “
Liquid Leak Predictions in Micro-and Nanoporous Gaskets
,”
ASME J. Pressure Vessel Technol.
,
133
(
5
), p.
051402
.10.1115/1.4003467
You do not currently have access to this content.