Abstract

Titanium-stabilized AISI 321 material (UNS S32100) is generally preferred in the pressure vessel industry as it is not sensitive to intergranular corrosion. In critical applications, the fatigue behavior of weld seams is among the most stringent requirements. The microstructural characteristics and fatigue performance double-side-welded AISI 321 plate having 6 mm thickness was evaluated in this work. AISI 321 was welded with double-side-gas tungsten arc welding (DS-GTAW) process. The fatigue behavior was examined with a loading ratio of R = 0.1 and frequency of 15 Hz for two different specimens: base metal (BM) and weld metal (WM). Monotonic tensile results shows the improved tensile properties of WM compared to BM samples. The fatigue strength of WM (150 MPa) was 25% higher than that of BM (120 MPa) specimen and is attributed to the increase in ferrite volume along with dendritic microstructure. The change in the fraction of low angle grain boundaries (LABs) and high angle grain boundaries (HABs) improved the tensile and fatigue properties. The stress amplitudes influenced the degree of striations in the BM and WM. Final fracture surfaces were characterized with dimples and microvoids, revealing the ductile mode of fatigue fracture. The fatigue rupture surfaces of BM and WM samples at different stress regimes are discussed.

References

1.
Prasad Reddy
,
G. V.
,
Dinesh
,
P. M.
,
Sandhya
,
R.
,
Laha
,
K.
, and
Jayakumar
,
T.
,
2016
, “
Behavior of 321 Stainless Steel Under Engineering Stress and Strain Controlled Fatigue
,”
Int. J. Fatigue
,
92
, pp.
272
280
.10.1016/j.ijfatigue.2016.07.009
2.
Guan
,
K.
,
Xu
,
X.
,
Xu
,
H.
, and
Wang
,
Z.
,
2005
, “
Effect of Aging at 700 °C on Precipitation and Toughness of AISI 321 and AISI 347 Austenitic Stainless Steel Welds
,”
Nucl. Eng. Des.
,
235
(
23
), pp.
2485
2494
.10.1016/j.nucengdes.2005.06.006
3.
Kumar
,
S. M.
,
Sankarapandian
,
S.
, and
Siva Shanmugam
,
N.
,
2020
, “
Investigations on Mechanical Properties and Microstructural Examination of Activated TIG-Welded Nuclear Grade Stainless Steel
,”
J. Brazil Soc. Mech. Sci. Eng.
,
42
(
292
).10.1007/s40430-020-02393-4
4.
Sadeghi
,
B.
,
Sharifi
,
H.
,
Rafiei
,
M.
, and
Tayebi
,
M.
,
2018
, “
Effects of Post Weld Heat Treatment on Residual Stress and Mechanical Properties of GTAW: The Case of Joining A537CL1 Pressure Vessel Steel and A321 Austenitic Stainless Steel
,”
Eng. Fail. Anal.
,
94
, pp.
396
406
.10.1016/j.engfailanal.2018.08.007
5.
Gonzaga
,
A. C.
,
Barbosa
,
C.
,
Tavares
,
S. S. M.
,
Zeemann
,
A.
, and
Payão
,
J. C.
,
2020
, “
Influence of Post Welding Heat Treatments on Sensitization of AISI 347 Stainless Steel Welded Joints
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
908
921
.10.1016/j.jmrt.2019.11.031
6.
Mankari
,
K.
, and
Acharyya
,
S. G.
,
2018
, “
Failure Analysis of AISI 321 Stainless Steel Welded Pipes in Solar Thermal Power Plants
,”
Eng. Failure Anal.
,
86
, pp.
33
43
.10.1016/j.engfailanal.2017.12.020
7.
Sunilkumar
,
D.
,
Muthukumaran
,
S.
,
Vasudevan
,
M.
, and
Reddy
,
M. G.
,
2020
, “
Effect of Friction Stir and Activated-GTA Welding Processes on the 9Cr–1Mo Steel to 316 LN Stainless Steel Dissimilar Weld Joints
,”
Sci. Technol. Weld. Joining
,
25
(
4
), pp.
311
319
.10.1080/13621718.2019.1695347
8.
Titouche
,
N.-E.
,
Boukharouba
,
T.
,
Amzert
,
S. A.
,
Hassan
,
A. J.
,
Lechelah
,
R.
, and
Ramtani
,
S.
,
2019
, “
Direct Drive Friction Welding Effect on Mechanical and Electrochemical Characteristics of Titanium Stabilized Austenitic Stainless Steel (AISI 321) Research Reactor Thick Tube
,”
J. Manuf. Process
,
41
, pp.
273
283
.10.1016/j.jmapro.2019.03.016
9.
Mohan Kumar
,
S.
, and
Siva Shanmugam
,
N.
,
2018
, “
Studies on the Weldability, Mechanical Properties and Microstructural Characterization of Activated Flux TIG Welding of AISI 321 Austenitic Stainless Steel
,”
Mater. Res. Express
,
5
(
10
), p.
106524
.10.1088/2053-1591/aad99f
10.
Nabahat
,
M.
,
Ahmadpour
,
K.
, and
Saeid
,
T.
,
2018
, “
Effect of Ultrasonic Vibrations in TIG Welded AISI 321 Stainless Steel: Microstructure and Mechanical Properties
,”
Mater. Res. Express
,
5
(
9
), p.
096509
.10.1088/2053-1591/aad662
11.
Ramkumar
,
K. D.
,
Pavan
,
B.
, and
Chandrasekar
,
V.
,
2018
, “
Development of Improved Microstructural Traits and Mechanical Integrity of Stabilized Stainless Steel Joints of AISI 321
,”
J. Manuf. Process
,
32
, pp.
582
594
.10.1016/j.jmapro.2018.03.029
12.
Hussain
,
A.
,
Hamdani
,
A. H.
, and
Akhter
,
R.
,
2014
, “
CO2 Laser Welding of AISI 321 Stainless Steel
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
60
, p.
012042
.10.1088/1757-899X/60/1/012042
13.
Mahmoudi
,
A.
,
Esmailian
,
M.
, and
Aghamiri
,
S. E.
,
2012
, “
Effect of Stabilizing Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321
,”
Adv. Mater. Res.
,
535–537
, pp.
692
696
.10.4028/www.scientific.net/AMR.535-537.692
14.
Kchaou
,
Y.
,
Pelosin
,
V.
,
Hénaff
,
G.
,
Haddar
,
N.
, and
Elleuch
,
K.
,
2019
, “
Failure Mode Analysis of SMAW Welded UNS N08028 (Alloy28) Super Austenitic Stainless Steel Under Crack Growth Tests
,”
Eng. Failure Anal.
,
97
, pp.
804
819
.10.1016/j.engfailanal.2019.01.067
15.
Maduraimuthu
,
V.
,
Vasudevan
,
M.
,
Muthupandi
,
V.
,
Bhaduri
,
A. K.
, and
Jayakumar
,
T.
,
2012
, “
Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints
,”
Metall. Mater. Trans. B
,
43
(
1
), pp.
123
132
.10.1007/s11663-011-9568-4
16.
Shankar
,
V.
,
Gill
,
T. P. S.
,
Mannan
,
S. L.
, and
Sundaresan
,
S.
,
1998
, “
Fusion Zone and Heat Affected Zone Cracking Susceptibility of Stabilised Austenitic Stainless Steels
,”
Sci. Technol. Weld. Joining
,
3
(
1
), pp.
17
24
.10.1179/stw.1998.3.1.17
17.
Cai
,
Y.
,
Luo
,
Z.
, and
Zeng
,
Y.
,
2017
, “
Influence of Deep Cryogenic Treatment on the Microstructure and Properties of AISI304 Austenitic Stainless Steel A-TIG Weld
,”
Sci. Technol. Weld. Joining
,
22
(
3
), pp.
236
243
.10.1080/13621718.2016.1222256
18.
Hu
,
D.
,
Li
,
S. L.
, and
Lu
,
S.
,
2013
, “
Effects of TIG Process on Corrosion Resistance of 321 Stainless Steel Welding Joint
,”
Mater. Sci. Forum
,
749
, pp.
173
179
.10.4028/www.scientific.net/MSF.749.173
19.
Khalifeh
,
A. R.
,
Dehghan
,
A.
, and
Hajjari
,
E.
,
2013
, “
Dissimilar Joining of AISI 304 L/St37 Steels by TIG Welding Process
,”
Acta Metall. Sin.
,
26
(
6
), pp.
721
727
.10.1007/s40195-013-0194-9
20.
Lillemae
,
I.
,
Remes
,
H.
,
Liinalampi
,
S.
, and
Itavuo
,
A.
,
2016
, “
Influence of Weld Quality on the Fatigue Strength of Thin Normal and High Strength Steel Butt Joints
,”
Weld. World
,
60
(
4
), pp.
731
740
.10.1007/s40194-016-0326-8
21.
Carneiro
,
L.
,
Jalalahmadi
,
B.
,
Ashtekar
,
A.
, and
Jiang
,
Y.
,
2019
, “
Cyclic Deformation and Fatigue Behavior of Additively Manufactured 17-4 PH Stainless Steel
,”
Int. J. Fatigue
,
123
, pp.
22
30
.10.1016/j.ijfatigue.2019.02.006
22.
Wei
,
L.
, and
Nelson
,
T. W.
,
2012
, “
Influence of Heat Input on Post Weld Microstructure and Mechanical Properties of Friction Stir Welded HSLA-65 Steel
,”
Mater. Sci. Eng. A
,
556
, pp.
51
59
.10.1016/j.msea.2012.06.057
23.
Sorger
,
G.
,
Lehtimaki
,
E.
, and
Hurme
,
S.
,
H.
Remes
,
P.
Vilaça
, and
L.
Molter
,
2018
, “
Microstructure and Fatigue Properties of Friction Stir Welded High-Strength Steel Plates
,”
Sci. Technol. Weld. Joining
,
23
(
5
), pp.
380
386
. 10.1080/13621718.2017.1399574
24.
Rajesh Kannan
,
A.
,
Mohan Kumar
,
S.
,
Pravin Kumar
,
N.
,
Siva Shanmugam
,
N.
,
Vishnu
,
A. S.
, and
Palguna
,
Y.
,
2020
, “
Process-Microstructural Features for Tailoring Fatigue Strength of Wire Arc Additive Manufactured Functionally Graded Material of SS904 L and Hastelloy C-276
,”
Mater. Lett.
,
274
, p.
127968
.10.1016/j.matlet.2020.127968
25.
Negru
,
R.
,
Marsavina
,
L.
,
Muntean
,
S.
, and
Pasca
,
N.
,
2013
, “
Fatigue Behaviour of Stainless Steel Used for Turbine Runners
,”
Adv. Eng. Forum
,
8–9
, pp.
413
420
.10.4028/www.scientific.net/AEF.8-9.413
26.
Mohammad
,
K. A.
,
Zainudin
,
E. S.
,
Sapuan
,
S. M.
,
Zahari
,
N. I.
, and
Aidy
,
A.
,
2013
, “
Fatigue Life for Type 316 L Stainless Steel Under Cyclic Loading
,”
Adv. Mater. Res
,
701
, pp.
77
81
.10.4028/www.scientific.net/AMR.701.77
27.
Bandyopadhyay
,
A.
,
Upadhyayula
,
M.
,
Traxel
,
K. D.
, and
Onuike
,
B.
,
2019
, “
Influence of Deposition Orientation on Fatigue Response of LENS™ Processed Ti6Al4V
,”
Mater. Lett.
,
255
, p.
126541
.10.1016/j.matlet.2019.126541
28.
Pereira
,
F. G. L.
,
Lourenço
,
J. M.
,
Nascimento
,
R. M. D.
, and
Castro
,
N. A.
,
2018
, “
Rubens Maribondo Do Nascimento, and Nicolau Apoena Castro. Fracture Behavior and Fatigue Performance of Inconel 625
,”
Mater. Res.
,
21
(
4
), pp.
1
13
.
29.
Chan
,
K. S.
,
2010
, “
Roles of Microstructure in Fatigue Crack Initiation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1428
1447
.10.1016/j.ijfatigue.2009.10.005
You do not currently have access to this content.