Abstract

A nozzle structure of portable high-pressure hydraulic sandblasting cutting equipment is optimized through simulation analysis and experimental tests in this paper. The hydraulic sandblasting cutting technology uses high speed sand fluid jet for cutting operations, which improves the cutting efficiency. At the beginning, the model of computational fluid dynamics (CFD) was established to simulate different types, cylinder lengths, and cone angles of nozzle. Also, the comparison analyses of the jet characteristics of the nozzles are performed. The results show that the conical straight nozzle has better jet characteristics. Moreover, combined with mathematical methods, the experimental data of conical nozzle are processed and obtained further results, including the effects on cutting depth of working pressure, cutting transverse speed, and cutting target distance. The research models and results in this paper can provide reference for optimizing nozzle structure, improving nozzle cutting efficiency, and developing similar research.

References

1.
Willson
,
S. M.
,
2012
, “
A Wellbore Stability Approach for Self-Killing Blowout Assessment
,” SPE Deepwater Drilling and Completions Conference, Galveston, TX, June 20–21, Paper No.
SPE-156330-MS
.10.2118/156330-MS
2.
Buaprommart
,
K.
,
Mahgerefteh
,
H.
,
Martynov
,
S.
, and
Striolo
,
A.
,
2019
, “
Shale Gas Well Blowout Fire and Explosion Modelling
,”
Appl. Therm. Eng.
,
149
, pp.
1061
1068
.10.1016/j.applthermaleng.2018.12.105
3.
Tian
,
J.
,
Yang
,
Y.
,
Yang
,
L.
,
Liu
,
Z.
, and
Yang
,
L.
,
2017
, “
Estimation of Gas Blowout Volume in Wells With Uncontrolled Blowout and Laboratory Studies
,”
Natural Gas Ind. B
,
4
(
5
), pp.
399
404
.10.1016/j.ngib.2017.10.005
4.
Michael
,
A.
, and
Gupta
,
I.
,
2020
, “
Wellbore Integrity During Blowouts: Broaching Prevention and Control
,” IADC/SPE International Drilling Conference and Exhibition,
Galveston, TX
, Mar. 3–5, Paper No.
SPE-199673-MS
.10.2118/199673-MS
5.
Shafiee
,
M.
,
Elusakin
,
T.
, and
Enjema
,
E.
,
2020
, “
Subsea Blowout Preventer (BOP): Design, Reliability, Testing, Deployment, and Operation and Maintenance Challenges
,”
J. Loss Prev. Process Ind.
,
66
, p.
104170
.10.1016/j.jlp.2020.104170
6.
Vijay
,
M. M.
,
1995
, “
Advances in the Applications of High Speed Fluid Jets
,”
Pacific Rim International Conference on Water Jet Technology
, Shimizu, Shizuoka, Japan, Apr. 20–22.
7.
Axinte
,
D. A.
,
Srinivasu
,
D. S.
,
Kong
,
M. C.
, and
Butler-Smith
,
P. W.
,
2009
, “
Abrasive Waterjet Cutting of Polycrystalline Diamond: A Preliminary Investigation
,”
Int. J. Mach. Tools Manuf.
,
49
(
10
), pp.
797
803
.10.1016/j.ijmachtools.2009.04.003
8.
van Luttervelt
,
C. A.
,
1989
, “
On the Selection of Manufacturing Methods Illustrated by an Overview of Separation Techniques for Sheet Materials
,”
CIRP Ann.
,
38
(
2
), pp.
587
607
.10.1016/S0007-8506(07)61127-5
9.
Orbanic
,
H.
, and
Junkar
,
M.
,
2008
, “
Analysis of Striation Formation Mechanism in Abrasive Water Jet Cutting
,”
Wear
,
265
(
5–6
), pp.
821
830
.10.1016/j.wear.2008.01.018
10.
Li
,
J.
,
Sun
,
L.
, and
Qiao
,
X.
,
2019
, “
Dynamic Simulation of Erosion Failure of a Hydraulic Jet Tool Via Discrete Phase Model
,”
J. Failure Anal. Prev.
,
19
(
5
), pp.
1304
1308
.10.1007/s11668-019-00724-9
11.
Zhang
,
J.
,
Kang
,
J.
,
Fan
,
J.
, and
Gao
,
J.
,
2016
, “
Study on Erosion Wear of Fracturing Pipeline Under the Action of Multiphase Flow in Oil & Gas Industry
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
334
346
.10.1016/j.jngse.2016.04.056
12.
Rajyalakshmi
,
M.
, and
Babu
,
P. S.
,
2016
, “
Abrasive Water Jet Machining—A Review on Current Development
,”
Int. J. Sci. Technol. Eng.
,
2
(
12
), pp.
428
434
.www.ijste.org/articles/IJST EV2I12178.pdf
13.
Mieszala
,
M.
,
Torrubia
,
P. L.
,
Axinte
,
D. A.
,
Schwiedrzik
,
J. J.
,
Guo
,
Y.
,
Mischler
,
S.
,
Michler
,
J.
, and
Philippe
,
L.
,
2017
, “
Erosion Mechanisms During Abrasive Waterjet Machining: Model Microstructures and Single Particle Experiments
,”
J. Mater. Process. Technol.
,
247
, pp.
92
102
.10.1016/j.jmatprotec.2017.04.003
14.
Mostofa
,
M. G.
,
Kil
,
K. Y.
, and
Hwan
,
A. J.
,
2010
, “
Computational Fluid Analysis of Abrasive Waterjet Cutting Head
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
249
252
.10.1007/s12206-009-1142-5
15.
Foldyna
,
J.
,
Zelenak
,
M.
,
Klich
,
J.
,
Hlavacek
,
P.
, and
Riha
,
Z.
,
2015
, “
The Measurement of the Velocity of Abrasive Particles at the Suction Part of the Cutting Head
,”
Teh. Vjesn.
,
22
(
6
), pp.
1441
1446
.10.17559/TV-20140214152925
16.
Chetana
,
S.
,
Chopade
,
N. K.
, and
Patil
,
2017
, “
CFD Analysis of Nozzle in Abrasive Water Suspension Jet Machining
,”
Int. J. Sci. Adv. Res. Technol.
,
3
(
6
), pp.
801
807
.https://www.researchgate.net/publication/327954624_CFD_ANALYSIS_OF_NOZZLE_IN_ABRASIVE_WATER_SUSPENSION_JET_MACHINING
17.
Verma
,
S.
,
Mishra
,
S. K.
, and
Moulick
,
S. K.
,
2015
, “
CFD Analysis of Nozzle in Abrasive Water Suspension Jet Machining
,”
Int. J. Adv. Eng. Res. Stud.
, 1(3), pp.
236
241
.www.researchgate.net/publication/327954624
18.
Surjaatmadja
,
J. B.
,
Grundmann
,
S. R.
,
Mcdaniel
,
B.
,
Deeg
,
W.
,
Brumley
,
J. L.
, and
Swor
,
L. C.
,
1998
, “
Hydrajet Fracturing: An Effective Method for Placing Many Fractures in Openhole Horizontal Wells
,” SPE International Oil & Gas Conference & Exhibition in China, Beijing, China, Nov. 2–6, Paper No.
SPE-48856-MS
.10.2118/48856-MS
19.
Wu
,
Y.-R.
, and
Hsu
,
W.-H.
,
2014
, “
A General Mathematical Model for Continuous Generating Machining of Screw Rotors With Worm-Shaped Tools
,”
Appl. Math. Modell.
,
38
(
1
), pp.
28
37
.10.1016/j.apm.2013.05.056
20.
Brinksmeier
,
E.
,
Mutlugünes
,
Y.
,
Klocke
,
F.
,
Aurich
,
J. C.
,
Shore
,
P.
, and
Ohmori
,
H.
,
2010
, “
Ultra-Precision Grinding
,”
CIRP Ann.
,
59
(
2
), pp.
652
671
.10.1016/j.cirp.2010.05.001
21.
Saranjam
,
B.
,
2013
, “
Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body
,”
Ocean Eng.
,
59
, pp.
9
14
.10.1016/j.oceaneng.2012.12.021
22.
Zhao
,
J.
,
Sun
,
B.
,
Chang
,
F.
,
Han
,
X.
,
Qi
,
N.
,
Xu
,
Y.
,
Yin
,
H.
, and
Deng
,
D.
,
2021
, “
Cement Erosion Process With Recyclable Sand Particle Water-Jet Impacts
,”
J. Cleaner Prod.
,
292
, p.
126006
.10.1016/j.jclepro.2021.126006
You do not currently have access to this content.