Abstract

A hierarchy of models exists in the literature for the simulation of pipe transients. One-dimensional (1D) water hammer models provide a cost-effective tool for the analysis of such transients. Traditional 1D models implement a quasi-steady approximation of the frictional term, which results in poor modeling of the attenuation of the transient. To improve the modeling of the attenuation phenomenon, alternative unsteady friction models were developed for the 1D water hammer formulation. Moreover, quasi-two-dimensional (quasi-2D) water hammer models were introduced, which allow the computation of the unsteady velocity profile and hence provide improved modeling of the attenuation phenomenon. Recently, interest has developed in the use of computational fluid dynamics (CFD) models based on the Navier–Stokes equations in the simulation of fluid transients. Both axisymmetric and full three-dimensional (3D) CFD models are used in this regard. The aim of the current paper is to carry out a comparative study between the performance of quasi-2D water hammer models, axisymmetric CFD models, and full 3D CFD models. Numerical computations using the three models are performed for both laminar and turbulent flow cases. Present results show that the quasi-2D water hammer model and the axisymmetric CFD model provide near identical results in terms of computing the magnitude, phase, and attenuation of the transient. Reported results also demonstrate the computational efficiency of the quasi-2D model, which provides results that agree reasonably well with the full 3D CFD model results while using a grid density, which is an order of magnitude lower than the grid requirements for the full 3D CFD model.

References

1.
Joukowsky
,
N. E.
,
1898
, “
On the Hydraulic Hammer in Water Supply Pipes
,”
Memoirs of the Imperial Academy Society of St. Petersburg
,
9
(
5
), pp.
1
71
.
2.
Allievi
,
L.
,
1902
, “
Teoria Generale Del Moto Perturbato Dell'acqua Nei Tubi in Pressione
,”
Annali Della Societa Degli Ingegneri ed Architette Italiani
, 17(5), pp.
285
325
.
3.
Jaeger
,
C.
,
1933
, “
Théorie Générale du Coup de Bélier—Application au Calcul Des Conduites à Caractéristiques Multiples et Des Chambres D'équilibre
,” Doctoral dissertation, ETH Zürich, Zürich, Switzerland.
4.
Wood
,
F. M.
,
1937
, “
The Application of Heaviside's Operational Calculus to the Solution of Problems in Water Hammer
,”
Trans. ASME
,
59
(
8
), pp.
707
713
.
5.
Rich
,
G.
,
1951
,
Hydraulic Transients
, 1st ed.,
McGraw-Hill
,
New York
.
6.
Parmakian
,
J.
,
1955
,
Water-Hammer Analysis
,
Prentice Hall, Englewood Cliffs
,
NJ
.
7.
Streeter
,
V. L.
, and
Lai
,
C.
,
1962
, “
Water-Hammer Analysis Including Fluid Friction
,”
J. Hydr. Div.-ASCE
,
88
(
3
), pp.
79
112
.10.1061/JYCEAJ.0000736
8.
Streeter
,
V. L.
, and
Lai
,
C.
,
1967
,
Hydraulic Transients
,
McGraw-Hill
,
New York
.
9.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
D.
Humphrey
, ed.,
Prentice Hall
,
Harlow, UK
.
10.
Tan
,
J. K.
,
Ng
,
K. C.
, and
Nathan
,
G. K.
,
1987
, “
Application of the Centre Implicit Method for Investigation of Pressure Transients in Pipelines
,”
Int. J. Numer. Methods Fluids
,
7
(
4
), pp.
395
406
.10.1002/fld.1650070407
11.
Hwang
,
Y. H.
, and
Chung
,
N. M.
,
2002
, “
A Fast Godunov Method for the Water-Hammer Problem
,”
Int. J. Numer. Methods Fluids
,
40
(
6
), pp.
799
819
.10.1002/fld.372
12.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2004
, “
Analysis of Unsteady Pipe Flow Using the Modified Finite Element Method
,”
Commun. Numer. Methods Eng.
,
21
(
4
), pp.
183
199
.10.1002/cnm.741
13.
Wahba
,
E. M.
,
2006
, “
Runge-Kutta Time-Stepping Schemes With TVD Central Differencing for the Water Hammer Equations
,”
Int. J. Numer. Methods Fluids
,
52
(
5
), pp.
571
590
.10.1002/fld.1188
14.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Resour. Plann. Manag.
,
126
(
4
), pp.
236
244
.10.1061/(ASCE)0733-9496(2000)126:4(236)
15.
Nathan
,
G. K.
,
Tan
,
J. K.
, and
Ng
,
K. C.
,
1988
, “
Two-Dimensional Analysis of Pressure Transients in Pipelines
,”
Int. J. Numer. Methods Fluids
,
8
(
3
), pp.
339
349
.10.1002/fld.1650080307
16.
Vardy
,
A. E.
,
Brown
,
J. M.
,
He
,
S.
,
Ariyaratne
,
C.
, and
Gorji
,
S.
,
2015
, “
Applicability of Frozen-Viscosity Models of Unsteady Wall Shear Stress
,”
J. Hydraulic Eng.
,
141
(
1
), p.
04014064
.10.1061/(ASCE)HY.1943-7900.0000930
17.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraulic Eng.
,
125
(
7
), pp.
676
685
.10.1061/(ASCE)0733-9429(1999)125:7(676)
18.
Brunelli
,
M. C. P.
,
2005
, “
Two-Dimensional Pipe Model for Laminar Flow
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
431
437
.10.1115/1.1905645
19.
Wahba
,
E. M.
,
2008
, “
Modelling the Attenuation of Laminar Fluid Transients in Piping Systems
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2863
2871
.10.1016/j.apm.2007.10.004
20.
Li
,
J.
,
Wu
,
P.
, and
Yang
,
J.
,
2010
, “
CFD Numerical Simulation of Water Hammer in Pipeline Based on the Navier-Stokes Equation
,”
V European Conference on Computational Fluid Dynamics ECCOMAS CFD
,
Lisbon, Portugal
, June 14–17.
21.
Martins
,
N. M. C.
,
Soares
,
A. K.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2016
, “
CFD Modeling of Transient Flow in Pressurized Pipes
,”
Comput. Fluids
,
126
, pp.
129
140
.10.1016/j.compfluid.2015.12.002
22.
Saemi
,
S.
,
Raisee
,
M.
,
Cervantes
,
M. J.
, and
Nourbakhsh
,
A.
,
2019
, “
Computation of Two- and Three-Dimensional Water Hammer Flows
,”
J. Hydraul. Res.
,
57
(
3
), pp.
386
19
.10.1080/00221686.2018.1459892
23.
Tang
,
X.
,
Duan
,
X.
,
Gao
,
H.
,
Li
,
X.
, and
Shi
,
X.
,
2020
, “
CFD Investigations of Transient Cavitation Flows in Pipeline Based on Weakly-Compressible Model
,”
Water
,
12
(
2
), p.
448
.10.3390/w12020448
24.
Martins
,
N. M. C.
,
Carrico
,
N. J. G.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2014
, “
Velocity-Distribution in Pressurized Pipe Flow Using CFD: Accuracy and Mesh Analysis
,”
Comput. Fluids
,
105
, pp.
218
230
.10.1016/j.compfluid.2014.09.031
25.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2018
, “
Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes
,”
ASME J. Fluids Eng.
,
140
(
1
), p. 011102.10.1115/1.4037504
26.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
27.
Baldwin
,
B.
, and
Lomax
,
H.
,
1978
, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. AIAA-78-257.
10.2514/6.1978-257
28.
Wahba
,
E. M.
,
2009
, “
Turbulence Modeling for Two-Dimensional Water Hammer Simulations in the Low Reynolds Number Range
,”
Comput. Fluids
,
38
(
9
), pp.
1763
1770
.10.1016/j.compfluid.2009.03.007
29.
Wahba
,
E. M.
,
2016
, “
On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes
,”
ASME J. Fluids Eng.
,
138
(
3
), p. 031106.10.1115/1.4031557
30.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J.
, 11(2), pp.
215
234
. 10.1147/rd.112.0215
You do not currently have access to this content.