Abstract

This work deals with the hydraulic gradient estimation in real-time of a transport pipeline computational model by considering a slightly compressible fluid and slightly deformable conduit walls. Since the hydraulic gradient (J(Q)) caused by the friction phenomenon in a pipeline plays an important role in the system's behavior, and this function is affected by fluid properties' deviations, environmental disturbances and conduit deteriorations, it is proposed that the on-line estimation of J(Q) could be part of a monitoring system. The proposition can be applied to obtain computational models of a line with a junction and assumes only measurements of pressure and flow rate at the ends of the conduit and the junction outflow. The generic form of the gradient function J(Q) is a second-order polynomial with coefficients that involve indirectly pipe roughness, the transversal area of the conduit, fluid viscosity and elements connected to the line. The extended Kalman filter (EKF) is applied to estimate the coefficients of the function J(Q). As a test apparatus, a 163 m long hydraulic pipeline is used. Diverse experiments show the usefulness of the on-line estimation of J(Q) for monitoring and simulation tasks where computational models are necessary.

References

1.
Farmer
,
E.
,
2017
,
Detecting Leaks in Pipelines
,
International Society of Automation
,
Pittsburgh, PA
.
2.
Islam
,
M. R.
, and
Chaudhry
,
M. H.
,
1998
, “
Modeling of Constituent Transport in Unsteady Flows in Pipe Networks
,”
J. Hydraul. Eng.
,
124
(
11
), pp.
1115
1124
.10.1061/(ASCE)0733-9429(1998)124:11(1115)
3.
Verde
,
C.
, and
Torres
,
L.
,
2017
,
Modeling and Monitoring of Pipelines and Networks
,
Springer
,
Berlin
.
4.
Puig
,
V.
,
Ocampo-Martínez
,
C.
,
Pérez
,
R.
,
Cembrano
,
G.
,
Quevedo
,
J.
, and
Escobet
,
T.
,
2017
,
Real-Time Monitoring and Operational Control of Drinking-Water Systems
,
Springer
,
Berlin
.
5.
Brown
,
O.
,
2002
, “
The History of the Darcy-Weisbach Equation for Pipe Flow Resistance
,”
Environmental and Water Resources History, Proceedings of the 150th Anniversary Conference of ASCE
, Washington, DC, Nov. 3–6, pp.
34
43
.https://ascelibrary.org/doi/10.1061/40650%282003%294
6.
Verde
,
C.
, and
Rojas
,
J.
,
2017
,
Modeling and Monitoring of Pipelines and Networks
(Recursive Scheme for Sequential Leaks' Identification),
Springer
,
Berlin
, pp.
125
1454
.
7.
Verde
,
C.
, Torres, L., and Carrera, R.,
2014
, “
Diagnóstico de Fugas y Tomas Clandestinas en Redes de Ductos de Gas y Líquido
,” Instituto de Ingeniería UNAM,
Ciudad Universitaria
,
Mexico
, Report No. 143908 CONACYT-SENER.
8.
Carrera
,
R.
,
2019
, “
Prototipo para detección de fallas en tuberías: Manual de uso, cuarta versión
,”
Instituto de Ingeniería-UNAM
,
CONACYT-SENER, Mexico
, Report No. 280170 CONACYT-SENER-hidrocarburos.
9.
Chaudhry
,
M.
,
2014
,
Applied Hydraulic Transients
,
Springer
,
New York
.
10.
Polyanin
,
A.
, and
Zaitsev
,
V.
,
2014
,
Handbook of Nonlinear Partial Differential Equation
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
11.
Torres
,
L.
, and
Verde
,
C.
,
2018
, “
Nonlinear Estimation of a Power Law for the Friction in a Pipeline
,”
Second IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON)
, Vol.
51
,
Guadalajara, Jalisco, Mexico
, June 20–22, pp.
67
72
.10.1016/j.ifacol.2018.07.256
12.
Rojas
,
J.
,
Verde
,
C.
,
Torres
,
L.
, and
Pérez
,
E.
,
2018
, “
On-Line Head Loss Identification for Monitoring of Pipelines
,”
Tenth IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS
, Vol.
51
, Aug. 29–31,
Warsaw, Poland
, pp.
748
754
.10.1016/j.ifacol.2018.09.659
13.
Frank
,
P.
,
1974
,
Introduction to Sensitivity Theory
,
Academic Press
,
Cambridge, MA
.
14.
Swamee
,
P. K.
,
1993
, “
Design of a Submarine Oil Pipeline
,”
J. Transp. Eng.
,
119
(
1
), pp.
159
170
.10.1061/(ASCE)0733-947X(1993)119:1(159)
15.
Eck
,
J.
, and
Mevissen
,
M.
,
2015
, “
Quadratic Approximations for Pipe Friction
,”
J. Hydroinf.
,
17
(
3
), pp.
462
472
.10.2166/hydro.2014.170
16.
Ljung
,
L.
,
1987
,
System Identification: Theory for the User
,
Prentice Hall
,
Upper Saddle River, NJ
.
17.
Isermann
,
R.
, and
Münchhof
,
M.
,
2011
,
Identification of Dynamic Systems (Identification With Parametric Models Discrete Time Signals)
,
Springer
,
Berlin
, pp.
205
210
.
18.
Houghtalen
,
R.
,
Akan
,
A.
, and
Hwang
,
N.
,
2010
,
Fundamentals of Hydraulic Engineering Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
19.
Ghaddar
,
E.
,
Claeys
,
M.
,
Mevissen
,
M.
, and
Eck
,
J.
,
2017
, “
Polynomial Optimization for Water Networks: Global Solutions for the Valve Setting Problem
,”
Eur. J. Oper. Res.
,
261
(
2
), pp.
450
459
.10.1016/j.ejor.2017.03.011
20.
Bergant
,
A.
,
Ross Simpson
,
A.
, and
Vítkovský
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
21.
Walker
,
B.
, and
Huang
,
K.
,
1995
, “
FDI by Extended Kalman Filter Parameter Estimation for an Industrial Actuator Benchmark
,”
Control Eng. Pract.
,
3
(
12
), pp.
1769
1774
.10.1016/0967-0661(95)00192-W
22.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
The MIT Press
,
Cambridge, MA
.
23.
Reif
,
K.
,
Sonnemann
,
F.
, and
Unbehauen
,
R.
,
1998
, “
An EKF-Based Nonlinear Observer With a Prescribed Degree of Stability
,”
Automatica
,
34
(
9
), pp.
1119
1123
.10.1016/S0005-1098(98)00053-3
24.
González
,
O.
,
Verde
,
C.
, and
Torres
,
L.
,
2017
, “
Leak Estimation Method for Complex Pipelines With Branch Junctions
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021701
.10.1115/1.4034403
You do not currently have access to this content.