Abstract

Structural integrity assessment of reactor pressure vessel (RPV) is important for the safe operation of nuclear power plant. For an RPV in a pressurized water reactor (PWR), pressurized thermal shock (PTS) resulted from rapid coolant water injection due to a loss-of-coolant accident is an issue of particular concern. The coolant water temperature in the emergency core cooling system (ECCS) can influence the integrity of RPV subjected to PTS events; thus, this paper is focused on investigating the effect of coolant water temperature of ECCS on failure probability of an RPV. First, thermal-hydraulic (TH) analyses were conducted for a Japanese PWR model plant by using RELAP5, and different coolant water temperatures in ECCS were considered to investigate the effect of coolant water temperature on TH behaviors during a PTS event. Using the TH analysis results, probabilistic fracture mechanics (PFM) analyses were performed for the RPV of the Japanese model plant. Based on the PFM analysis results, the effect of coolant water temperature on failure probability of the RPV was quantified.

References

1.
Uno
,
S.
,
Katsuyama
,
J.
,
Watanabe
,
T.
, and
Li
,
Y.
,
2016
, “
Loading Condition Evaluation for Structural Integrity Assessment of RPV Due to PTS Event Based on Three-Dimensional Thermal-Hydraulics and Structural Analyses
,”
ASME Paper No. PVP2016-63443.
10.1115/PVP2016-63443
2.
Information Systems Laboratories
,
2003
, “
RELAP5/MOD3.3 CODE MANUAL
,”
United States Nuclear Regulatory Commission
,
Rockville, MD
,
Report No. NUREG/CR-5535/Rev 1
.https://www.nrc.gov/docs/ML1103/ML110380259.pdf
3.
Sonnenburg
,
H. G.
,
1997
, “
Phänomenologische Versuchsauswertung des Versuchs UPTFTRAM C1 Thermisches Mischen im Kaltstrang
,”
Gesellschaft für Anlagen- und Reaktorsicherheit
,
Schwertnergasse 1, Germany
, Report No. GRS-A-2434.
4.
Katsuyama
,
J.
,
Uno
,
S.
,
Watanabe
,
T.
, and
Li
,
Y.
,
2018
, “
Influence Evaluation of Loading Conditions During Pressurized Thermal Shock Transients Based on Thermal-Hydraulics and Structural Analyses
,”
Front. Mech. Eng.
,
13
(
4
), pp.
563
570
.10.1007/s11465-018-0487-9
5.
Qian
,
G.
,
Niffenegger
,
M.
,
Sharabi
,
M.
, and
Lafferty
,
N.
,
2018
, “
Effect of Non-Uniform Reactor Cooling on Fracture and Constraint of a Reactor Pressure Vessel
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
7
), pp.
1559
1575
.10.1111/ffe.12796
6.
González-Albuixech
,
V. F.
,
Qian
,
G.
,
Sharabi
,
M.
,
Niffenegger
,
M.
,
Niceno
,
B.
, and
Lafferty
,
N.
,
2015
, “
Comparison of PTS Analyses of RPVs Based on 3D-CFD and RELAP5
,”
Nucl. Eng. Des.
,
291
, pp.
168
178
.10.1016/j.nucengdes.2015.05.025
7.
Japan Electric Association
,
2016
, “
Method of Verification Tests of the Fracture Toughness for Nuclear Power Plant Components
,”
Japan Electric Association
,
Tokyo, Japan
, Report No. JEAC4206-2016 (in Japanese).
8.
Williams
,
P. T.
,
Dickson
,
D. L.
,
Bass
,
B. R.
, and
Klasky
,
H. B.
,
2016
, “
Fracture Analysis of Vessels – Oak Ridge FAVOR, v16.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
,
Report No. ORNL/LTR-2016/309
.https://www.nrc.gov/docs/ML1627/ML16273A033.pdf
9.
Katsuyama
,
J.
,
Masaki
,
K.
,
Miyamoto
,
Y.
, and
Li
,
Y.
,
2018
, “
User's Manual and Analysis Methodology of Probabilistic Fracture Mechanics Analysis Code PASCAL4 for Reactor Pressure Vessel
,”
Japan Atomic Energy Agency
,
Tokai, Ibaraki, Japan
, Report No. JAEA-Data/Code 2017-015 (in Japanese).
10.
Spencer
,
B. W.
,
Hoffman
,
W. M.
, and
Backman
,
M. A.
,
2019
, “
Modular System for Probabilistic Fracture Mechanics Analysis of Embrittled Reactor Pressure Vessels in the Grizzly Code
,”
Nucl. Eng. Des.
,
341
, pp.
25
37
.10.1016/j.nucengdes.2018.10.015
11.
Li
,
Y.
,
Katsumata
,
G.
,
Masaki
,
K.
,
Hayashi
,
S.
,
Itabashi
,
Y.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL
,”
ASME Paper No. ICONE25-66468.
10.1115/ICONE25-66468
12.
Li
,
Y.
,
Uno
,
S.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses With FAVOR
,”
ASME Paper No. PVP2017-66004.
10.1115/PVP2017-66004
13.
Li
,
Y.
,
Uno
,
S.
,
Masaki
,
K.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2018
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses
,”
ASME Paper No. PVP2018-84963.
10.1115/PVP2018-84963
14.
Lu
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
,
Miyamoto
,
Y.
,
Hirota
,
T.
,
Itabashi
,
Y.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2020
, “
Recent Verification Activities on Probabilistic Fracture Mechanics Analysis Code PASCAL4 for Reactor Pressure Vessels
,”
Mech. Eng. J.
,
7
(
3
), p.
19
.10.1299/mej.19-00573
15.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
,
Li
,
Y.
, and
Yoshimura
,
S.
,
2020
, “
Guideline on Probabilistic Fracture Mechanics Analysis for Japanese Reactor Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021205
.10.1115/1.4045874
16.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
, and
Li
,
Y.
,
2017
, “
Guideline on a Structural Integrity Assessment for Reactor Pressure Vessel Based on Probabilistic Fracture Mechanics
,”
Japan Atomic Energy Agency
,
Tokai, Ibaraki, Japan
, Report No. JAEA-Research 2016-022 (in Japanese).
17.
The ROSA-V Group
,
2003
, “
ROSA-V Large Scale Test Facility (LSTF) System Description for the Third and Fourth Simulated Fuel Assemblies
,”
Japan Atomic Energy Research Institute
,
Tokai, Ibaraki, Japan
,
Report No. JAERI-Tech 2003-037
.https://jopss.jaea.go.jp/search/servlet/search?22817&language=1
18.
Watanabe
,
T.
,
2015
, “
Effects of ECCS on the Cold-Leg Fluid Temperature During SGTR Accidents
,”
Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng.
,
9
, pp.
1439
1443
.10.5281/zenodo.1108663
19.
U.S. Nuclear Regulatory Commission
,
2004
, “
RELAP5 Thermal hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants
,”
United States Nuclear Regulatory Commission
,
Rockville, MD
,
Report No. NUREG/CR-6858
.https://www.nrc.gov/docs/ML0435/ML043570385.pdf
20.
Lu
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
,
Uno
,
S.
, and
Masaki
,
K.
,
2020
, “
Improvements on Evaluation Functions of a Probabilistic Fracture Mechanics Analysis Code for Reactor Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021302
.10.1115/1.4045512
21.
EricksonKirk
,
M.
,
Junge
,
M.
,
Arcieri
,
W.
,
Bass
,
B. R.
,
Beaton
,
R.
,
Bessette
,
D.
,
Chang
,
T. H.
,
Dickson
,
T.
,
Fletcher
,
C. D.
,
Kolaczkowski
,
A.
,
Malik
,
S.
,
Mintz
,
T.
,
Pugh
,
C.
,
Simonen
,
F.
,
Siu
,
N.
,
Whitehead
,
D.
,
Williams
,
P.
,
Woods
,
R.
, and
Yin
,
S.
,
2007
, “
Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61)
,”
United States Nuclear Regulatory Commission
,
Rockville, MD
,
Report No. NUREG-1806
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1806/
22.
Atomic Energy Society of Japan
,
2009
, “
Implementation Standard Concerning the Probabilistic Safety Assessment of Nuclear Power Plants under Power Capacity Operation Conditions: 2008 (PSA Level 1)
,”
Atomic Energy Society of Japan
,
Tokyo, Japan
, Report No. AESJ-SC-P008: 2008 (in Japanese).
23.
Chou
,
H. W.
, and
Huang
,
C. C.
,
2014
, “
Structural Reliability Evaluation on the Pressurized Water Reactor Pressure Vessel Under Pressurized Thermal Shock Events
,”
ASME Paper No. PVP2014-28350.
10.1115/PVP2014-28350
24.
Hirota
,
T.
,
Sakamoto
,
H.
, and
Ogawa
,
N.
,
2014
, “
Proposal for Update on Evaluation Procedure for Reactor Pressure Vessels Against Pressurized Thermal Shock Events in Japan
,”
ASME Paper No. PVP2014-28392.
10.1115/PVP2014-28392
25.
Katsuyama
,
J.
,
Nishikawa
,
H.
,
Udagawa
,
M.
,
Nakamura
,
M.
, and
Onizawa
,
K.
,
2013
, “
Assessment of Residual Stress Due to Overlay-Welded Cladding and Structural Integrity of a Reactor Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
135
(
5
), p.
051402
.10.1115/1.4024617
26.
Japan Electric Association
,
2013
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,”
Japan Electric Association
,
Tokyo, Japan
, Report No. JEAC4201-2007 (supplemented in 2013), (in Japanese).
27.
Japan Society of Mechanical Engineers
,
2016
, “
Codes for Nuclear Power Generation Facilities- Rules on Fitness-for-Service for Nuclear Power Plants
,” JSME, Tokyo, Standard No. JSME S NA1-2016.
28.
Lu
,
K.
,
Mano
,
A.
,
Katsuyama
,
J.
,
Li
,
Y.
, and
Iwamatsu
,
F.
,
2018
, “
Development of Stress Intensity Factors for Subsurface Flaws in Plates Subjected to Polynomial Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031201
.10.1115/1.4039125
29.
Marie
,
S.
, and
Chapuliot
,
S.
,
2008
, “
Improvement of the Calculation of the Stress Intensity Factors for Underclad and Through-Clad Defects in a Reactor Pressure Vessel Subjected to a Pressurized Thermal Shock
,”
Int. J. Pressure Vessels Piping
,
85
(
8
), pp.
517
531
.10.1016/j.ijpvp.2008.02.006
30.
American Society of Mechanical Engineers
,
2019
, “
ASME B&PV Code Section XI, Rules for In-service Inspection of Nuclear Power Plant Components
,”
ASME
,
New York
,
Standard No. ASME BPVC. XI 2019
.https://www.asme.org/codes-standards/find-codes-standards/bpvc-xi-bpvc-section-xi-rules-inservice-inspection-nuclear-power-plant-components-div-900111
31.
Chapuliot
,
S.
,
Izard
,
J.
,
Moinereau
,
D.
, and
Marie
,
S.
,
2010
, “
WPS Criterion Proposition Based on Experimental Data Base Interpretation
,”
Societe Francaise d'Energie Nucleaire (SFEN)
,
Fontevraud 7, Avignon, France
.https://www.osti.gov/etdeweb/biblio/21496655
32.
Simonen
,
F. A.
,
Doctor
,
S. R.
,
Schuster
,
G. J.
, and
Heasler
,
P. G.
,
2003
, “
A Generalized Procedure for Generating Flaw-Related Inputs for the FAVOR Code
,”
United States Nuclear Regulatory Commission
,
Rockville, MD
,
Report No. NUREG/CR-6817, Rev.1
.https://www.nrc.gov/docs/ML1324/ML13240A258.pdf
33.
Lu
,
K.
,
Masaki
,
K.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2018
, “
Development of Crack Evaluation Models for Probabilistic Fracture Mechanics Analyses of Japanese Reactor Pressure Vessels
,”
ASME Paper No. PVP2018-84965.
10.1115/PVP2018-84965
34.
Iwata
,
K.
,
Tobita
,
T.
,
Takamizawa
,
H.
,
Chimi
,
Y.
,
Yoshimoto
,
K.
, and
Nishiyama
,
Y.
,
2016
, “
Specimen Size Effect on Fracture Toughness of Reactor Pressure Vessel Steel Following Warm Pre-Stressing
,”
ASME Paper No. PVP2016-63795.
10.1115/PVP2016-63795
You do not currently have access to this content.