Abstract

Water jet peening (WJP), a surface modification technique, can use the impact pressure induced by shock waves to introduce compressive residual stress in the surface of metal parts, thereby improving the fatigue life of metal parts, especially has broad application prospects in strengthening the concave surface area of metal parts. The impact pressure of the concave surface is different compared with the flat surface due to the effects of geometrical factors on the shock wave released. In this work, a mathematical model for calculating the peak pressure in the initial contact area of the concave surface is developed, and the effects of geometric factors (opening angle of V surface α and spherical radius R) and WJP parameters (jet velocity v and jet diameter d) on the peak pressure are analyzed by using finite element simulation models of WJP on concave V-shaped surface, concave spherical surface, V-groove surface, spherical groove surface, and spherical groove surface established with the coupled Eulerian–Lagrangian (CEL) algorithm of abaqus. A mechanism of impact pressure evaluation of the concave surface is developed to explain the peak pressure results obtained from finite element models. The results show that the peak pressure is mainly determined by α and v, while d does not affect the peak pressure for a concave V-shaped or V-groove surface. The peak pressure is mainly determined by R, v, and d for a concave spherical or spherical groove surface.

References

1.
Soyama
,
H.
,
2019
, “
Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening
,”
J. Mater. Process. Technol.
,
269
, pp.
65
78
.10.1016/j.jmatprotec.2019.01.030
2.
Tan
,
L.
,
Yao
,
C.
,
Zhang
,
D.
,
Ren
,
J.
,
Shen
,
X.
, and
Zhou
,
Z.
,
2020
, “
Effects of Different Mechanical Surface Treatments on Surface Integrity of TC17 Alloys
,”
Surf. Coat. Technol.
,
398
, p.
126073
.10.1016/j.surfcoat.2020.126073
3.
Epp
,
J.
, and
Zoch
,
H. W.
,
2016
, “
Comparison of Alternative Peening Methods for the Improvement of Fatigue Properties of Case-Hardened Steel Parts
,”
HTM-J. Heat Treat. Mater.
,
71
(
3
), pp.
109
116
.10.3139/105.110288
4.
Qin
,
M.
,
Ju
,
D. Y.
, and
Oba
,
R.
,
2006
, “
Investigation of the Influence of Incidence Angle on the Process Capability of Water Cavitation Peening
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1409
1413
.10.1016/j.surfcoat.2006.02.006
5.
Oka
,
Y. I.
,
Mihara
,
S.
, and
Miyata
,
H.
,
2007
, “
Effective Parameters for Erosion Caused by Water Droplet Impingement and Applications to Surface Treatment Technology
,”
Wear
,
263
(
1–6
), pp.
386
394
.10.1016/j.wear.2006.11.022
6.
Azhari
,
A.
,
Schindler
,
C.
,
Nkoumbou
,
J.
, and
Kerscher
,
E.
,
2014
, “
Surface Erosion of Carbon Steel 1045 During Waterjet Peening
,”
J. Mater. Eng. Perform.
,
23
(
5
), pp.
1870
1880
.10.1007/s11665-014-0932-9
7.
He
,
Z.
,
Zhao
,
S.
,
Fu
,
T.
,
Chen
,
L.
,
Zhang
,
Y.
,
Zhang
,
M.
, and
Wang
,
P.
,
2018
, “
Experimental and Numerical Analysis of Water Jet Peening on 6061 Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021406
.10.1115/1.4039071
8.
Zou
,
Y.
,
Sang
,
Z.
,
Wang
,
Q.
,
Li
,
T.
,
Li
,
D.
, and
Li
,
Y.
,
2019
, “
Improving the Mechanical Properties of 304 Stainless Steel Using Waterjet Peening
,”
Medziagotyra
,
26
(
2
), pp.
161
167
.10.5755/j01.ms.26.2.21117
9.
Heymann
,
F. J.
,
1969
, “
High-Speed Impact Between a Liquid Drop and a Solid Surface
,”
J. Appl. Phys.
,
40
(
13
), pp.
5113
5122
.10.1063/1.1657361
10.
Cook
,
S. S.
,
1928
, “
Erosion by Water-Hammer
,”
Proc. R. Soc. London. Ser. A
,
119
(
783
), pp.
481
488
.10.1098/rspa.1928.0107
11.
Dyment
,
A.
,
2015
, “
Compressible Liquid Impact Against a Rigid Body
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031102
.10.1115/1.4028597
12.
Xu
,
J.
,
Xie
,
J.
,
He
,
X.
,
Cheng
,
Y.
, and
Liu
,
Q.
,
2017
, “
Water Drop Impacts on a Single-Layer of Mesh Screen Membrane: Effect of Water Hammer Pressure and Advancing Contact Angles
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
83
93
.10.1016/j.expthermflusci.2016.11.006
13.
He
,
Z.
,
Yu
,
H.
,
Zhao
,
S.
,
Xing
,
J.
,
Li
,
D.
,
Li
,
C.
,
Chen
,
L.
, and
Wang
,
S.
,
2020
, “
An Experimental and Numerical Analysis of Water Jet Peening of Al6061-T6
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
3833
3845
.10.1007/s00170-020-05282-1
14.
Obara
,
T.
,
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
Liquid-Jet Impact on Liquid and Solid Surfaces
,”
Wear
,
186-187
, pp.
388
394
.10.1016/0043-1648(95)07187-3
15.
Shi
,
H. H.
,
Takayama
,
K.
, and
Nagayasu
,
N.
,
1995
, “
The Measurement of Impact Pressure and Solid Surface Response in Liquid-Solid Impact Up to Hypersonic Range
,”
Wear
,
186–187
, pp.
352
359
.10.1016/0043-1648(95)07141-5
16.
Mabrouki
,
T.
,
Raissi
,
K.
, and
Cornier
,
A.
,
2000
, “
Numerical Simulation and Experimental Study of the Interaction Between a Pure High-Velocity Waterjet and Targets: Contribution to Investigate the Decoating Process
,”
Wear
,
239
(
2
), pp.
260
273
.10.1016/S0043-1648(00)00333-1
17.
Maniadaki
,
K.
,
Kestis
,
T.
,
Bilalis
,
N.
, and
Antoniadis
,
A.
,
2007
, “
A Finite Element-Based Model for Pure Waterjet Process Simulation
,”
Int. J. Adv. Manuf. Technol.
,
31
(
9–10
), pp.
933
940
.10.1007/s00170-005-0274-8
18.
Hsu
,
C. Y.
,
Liang
,
C. C.
,
Teng
,
T. L.
, and
Nguyen
,
A. T.
,
2013
, “
A Numerical Study on High-Speed Water Jet Impact
,”
Ocean Eng.
,
72
(
1
), pp.
98
106
.10.1016/j.oceaneng.2013.06.012
19.
Xie
,
J.
, and
Rittel
,
D.
,
2017
, “
Three-Dimensional Stochastic Modeling of Metallic Surface Roughness Resulting From Pure Waterjet Peening
,”
Int. J. Eng. Sci.
,
120
, pp.
241
253
.10.1016/j.ijengsci.2017.08.011
20.
Xie
,
J.
, and
Rittel
,
D.
,
2018
, “
The Effects of Waterjet Peening on a Random-Topography Metallic Implant Surface
,”
Eur. J. Mech. A/Solids
,
71
, pp.
235
244
.10.1016/j.euromechsol.2018.03.022
21.
Fei
,
H.
,
Shuqing
,
L.
, and
Yong
,
L.
,
2018
, “
Research on the Impacting Pressures of Water Jet Impacting the Irregular Targets Based on the ALE Algorithm
,”
J. Hunan Univ. Sci. Technol. Sci. Ed.
,
33
(
3
), pp.
8
15
.
22.
Huang
,
F.
,
Li
,
S.
,
Zhao
,
Y.
, and
Liu
,
Y.
,
2018
, “
Study on Lateral Jetting Range During an Arc-Curved Jet Impacting Nonplanar Solid Surfaces
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101201
.10.1115/1.4039945
23.
Noh
,
W. F.
,
1964
, “
CEL: A Time-Dependent, Two Space Dimensional, Coupled Eulerian–Lagrange Code
,”
Methods Comput. Phys
,
B.
Alder
,
S.
Fernbach
, and
M.
Rotenberg
, eds.,
Academic Press
,
New York
, pp.
117
179
.
24.
Dassault Systèmes Simulia Corporation,
2014
,
Abaqus Analysis User's Manual Version 6.14
,
Dassault Systèmes Simulia Corporation
,
Providence, RI
.
25.
He
,
Z.
,
Li
,
C.
,
Zhao
,
S.
,
Cui
,
B.
,
Li
,
D.
,
Yu
,
H.
,
Chen
,
L.
, and
Fu
,
T.
,
2019
, “
Mathematical Model and Verification of Residual Stress Induced by Water Jet Peening
,”
Metals
,
9
(
9
), p.
936
.10.3390/met9090936
You do not currently have access to this content.