Abstract

Prior research has recognized that the compound- and dual-technique-based branching redesign measures, used as alternatives to the conventional technique-based one, were effective in upgrading steel pipe-based pressurized hydraulic systems. Principally, the compound technique used two different plastic material types for the short-penstock instead of the single material type utilized in the conventional technique. However, the dual technique is based on splitting the single penstock installed in the conventional technique into a set of dual subpenstocks placed at each connection of the main-piping system to hydraulic parts. This handling aimed at improving the conventional technique efficiency with regard to the tradeoff between the magnitude attenuation and period expansion effects of the transient pressure-wave signal. Accordingly, this study proposed a comprehensive comparison between the compound- and dual-technique-based branching strategy with particular focus on the tradeoff between the two last parameters. The plastic material types demonstrated in this study included the high- or low-density polyethylene. The application addressed a waterhammer maneuver initiated into a reservoir-steel-pipe-valve system. Numerical computations used the method of characteristics for the discretization of the 1D extended pressurized-pipe flow model, embedding the Kelvin–Voigt and Vitkovsky formulations. The finding of this study suggested that the high- or low-density polyethylene (HDPE–LDPE) setup of the compound technique is the most prominent protected system setup, providing an acceptable tradeoff between the attenuation of magnitude and the expansion of the period of pressure-wave oscillation.

References

1.
Bergant
,
A.
, and
Simpson
,
A.
,
1999
, “
Pipeline Column Separation Flow Regimes
,”
J. Hydraul. Eng. ASCE
,
125
(
8
), pp.
835
848
.10.1061/(ASCE)0733-9429(1999)125:8(835)
2.
Almeida
,
A. B.
, and
Ramos
,
H. M.
,
2010
, “
Water Supply Operation: Diagnosis and Reliability Analysis in a Lisbon Pumping System
,”
J. Water Supply Res. Technol. AQUA
,
59
(
1
), pp.
66
78
.10.2166/aqua.2010.051
3.
Essaidi
,
B.
, and
Triki
,
A.
,
2021
, “
On the Transient Flow Behavior in Pressurized Plastic Pipe-Based Water Supply Systems
,”
J. Water Supply: Res. Technol.
, 70(1), pp.
67
76
. 10.2166/aqua.2020.051
4.
Moussou
,
P.
,
Gibert
,
R. J.
,
Brasseur
,
G.
,
Teygeman
,
C.
,
Ferrari
,
J.
, and
Rit
,
J. F.
,
2010
, “
Instability of Pressure Relief Valves in Water Pipes
,”
ASME J. Pressure Vessel Technol
,
132
(
4
), p.
041308
.10.1115/1.4002164
5.
Besharat
,
M.
,
Tarinejad
,
R.
,
Aalami
,
M. T.
, and
Ramos
,
H. M.
,
2016
, “
Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis
,”
Water Resource Manage
,
30
(
8
), pp.
2687
2702
.10.1007/s11269-016-1310-1
6.
Ramezani
,
L.
, and
Karney
,
B.
,
2017
, “
Water Column Separation and Cavity Collapse for Pipelines Protected With Air Vacuum Valves: Understanding the Essential Wave Processes
,”
J. Hydraul. Eng.
,
143
(
2
), p.
04016083
.10.1061/(ASCE)HY.1943-7900.0001235
7.
Zhang
,
B.
,
Wan
,
W.
, and
Shi
,
M.
,
2018
, “
Experimental and Numerical Simulation of Water Hammer in Gravitational Pipe Flow With Continuous Air Entrainment
,”
Water
,
10
(
7
), p.
928
.10.3390/w10070928
8.
Boulos
,
P. F.
,
Karney
,
B. W.
,
Wood
,
D. J.
, and
Lingireddy
,
S.
,
2005
, “
Hydraulic Transient Guidelines for Protecting Water Distribution Systems
,”
J. Am. Water Works Assoc.
,
97
(
5
), pp.
111
124
.10.1002/j.1551-8833.2005.tb10892.x
9.
Pothof
,
I. W.
, and
Karney
,
B. W.
,
2012
, “
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
,”
IWA Water Loss Conference
, International Water Association, Manila, Philippines, Feb. 26–29, pp.
1
12
.10.5772/53944
10.
Jung
,
B. S.
,
Karney
,
B. W.
,
Boulos
,
P. F.
, and
Wood
,
D. J.
,
2007
, “
The Need for Comprehensive Transient Analysis of Distribution Systems
Am. Water Works Assoc.
,
99
(
1
), pp.
112
123
. 10.1002/j.1551-8833.2007.tb07851.x
11.
Wood
,
D. J.
,
Lingireddy
,
S.
,
Boulos
,
P. F.
,
Karney
,
B. W.
, and
McPherson
,
D. L.
,
2005
, “
Numerical Methods for Modeling Transient Flow in Distribution Systems
,”
J. Am. Water Works Assoc.
,
97
(
7
), pp.
104
115
.10.1002/j.1551-8833.2005.tb10936.x
12.
Ghilardi
,
P.
, and
Paoletti
,
A.
,
1986
, “
Additional Viscoelastic Pipes as Pressure Surge Suppressors
,”
Proceedings of Fifth International Conference on Pressure Surges
, Cranfield, UK, Sept. 22–24, pp.
113
121
. http://www.pist.tn/record/5965
13.
Massouh
,
F.
, and
Comolet
,
R.
,
1984
, “
Étude D'un Système Anti-Bélier en Ligne—Study of a Water-Hammer Protection System in Line
,”
La Houille Blanche
,
5
(
5
), pp.
355
362
.10.1051/lhb/1984023
14.
Pezzinga
,
G.
, and
Scandura
,
P.
,
1995
, “
Unsteady Flow in Installations With Polymeric Additional Pipe
,”
J. Hydraul. Eng. ASCE
,
121
(
11
), pp.
802
811
.10.1061/(ASCE)0733-9429(1995)121:11(802)
15.
Triki
,
A.
,
2016
, “
Water-Hammer Control in Pressurized-Pipe Flow Using an in-Line Polymeric Short-Section
,”
Acta Mech.
,
227
(
3
), pp.
777
793
. 10.1007/s00707-015-1493-1
16.
Triki
,
A.
,
2017
, “
Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock
,”
J. Pipeline Syst.-Eng. Pract. ASCE
,
8
(
4
), p.
4017024
.10.1061/(ASCE)PS.1949-1204.0000277
17.
Triki
,
A.
,
2018
, “
Further Investigation on Water-Hammer Control Inline Strategy in Water-Supply Systems
,”
J. Water Supply Res. Technol. Aqua
,
67
(
1
), pp.
30
43
.10.2166/aqua.2017.073
18.
Triki
,
A.
, and
Fersi
,
M.
,
2018
, “
Further Investigation on the Water-Hammer Control Branching Strategy in Pressurized Steel-Piping Systems
,”
Int. J. Press. Vessel. Pip.
,
165
, pp.
135
144
.10.1016/j.ijpvp.2018.06.002
19.
Fersi
,
M.
, and
Triki
,
A.
,
2019
, “
Investigation on Re-Designing Strategies for Water-Hammer Control in Pressurized-Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
141
(
2
), p.
21301
.10.1115/1.4040136
20.
Chaker
,
M. A.
, and
Triki
,
A.
,
2021
, “
The Branching Redesign Technique Used for Upgrading Steel-Pipes-Based Hydraulic Systems: Re-Examined
,”
ASME J. Pressure Vessel Technol
,
143
(
3
), p.
31302
.10.1115/1.4047829
21.
Azoury
,
P. H.
,
Baasiri
,
M.
, and
Najm
,
H.
,
1986
, “
Effect of Valve‐Closure Schedule on Water Hammer
,”
ASCE J. Hydraul. Eng.
,
112
(
10
), pp.
890
903
.10.1061/(ASCE)0733-9429(1986)112:10(890)
22.
Kodura
,
A.
,
2016
, “
An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer
,”
Arch. Hydro-Eng. Environ. Mech.
,
63
(
1
), pp.
35
45
.10.1515/heem-2016-0003
23.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
,
Switzerland AG, Cham, Switzerland
.
24.
Triki
,
A.
, and
Chaker
,
M. A.
,
2019
, “
Compound Technique-Based Inline Design Strategy for Waterhammer Control in Steel Pressurized-Piping Systems
,”
Int. J. Press. Vessel. Pip.
,
169
, pp.
188
203
.10.1016/j.ijpvp.2018.12.001
25.
Chaker
,
M. A.
, and
Triki
,
A.
,
2020
, “
Investigating the Branching Redesign Strategy for Surge Control in Pressurized Steel Piping Systems
,”
Int. J. Pressure Vessel. Pip.
,
180
, p.
104044
.10.1016/j.ijpvp.2020.104044
26.
Triki
,
A.
,
2016
, “
Dual-Technique Based Inline Design Strategy for Water-Hammer Control in Pressurized-Pipe Flow
,”
Acta Mech.
,
227
(
3
), pp.
777
793
.10.1007/s00707-017-2085-z
27.
Triki
,
A.
,
2021
, “
Comparative Assessment of the Inline and Branching Design Strategies Based on the Compound-Technique
,”
J. Water Supply Res. Technol.
,
70
(
1
), p.
jws2020065
.10.2166/aqua.2020.065
28.
Trabelsi
,
M.
, and
Triki
,
A.
,
2019
, “
Dual Control Technique for Mitigating Water-Hammer Phenomenon in Pressurized Steel-Piping Systems
,”
Int. J. Pressure Vessel. Pip.
,
172
, pp.
397
413
.10.1016/j.ijpvp.2019.04.011
29.
Trabelsi
,
M.
, and
Triki
,
A.
,
2020
, “
Exploring the Performances of the Dual Technique –Based Water- Hammer Redesign Strategy in Water-Supply Systems
,”
J. Water Supply Res. Technol. Aqua
,
69
(
1
), pp.
6
43
.10.2166/aqua.2019.010
30.
Ben Iffa
,
R.
, and
Triki
,
A.
,
2019
, “
Assessment of Inline Techniques -Based Water-Hammer Control Strategy in Water Supply Systems
,”
J. Water Supply Res. Technol. Aqua
,
68
(
7
), pp.
562
572
.10.2166/aqua.2019.095
31.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
,
Maksimovic
,
C.
, and
Butler
,
D.
,
2004
, “
Waterhammer in Pressurized Polyethylene Pipes: Conceptual Model and Experimental Analysis
,”
Urban Water J.
,
1
(
2
), pp.
177
197
.10.1080/15730620412331289977
32.
Aklonis
,
J. J.
,
MacKnight
,
W. J.
, and
Shen
,
M.
,
1972
,
Introduction to Polymer Viscoelasticity
,
Wiley-Interscience, Wiley
,
New York
.
33.
Vitkovsky
,
J. P.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Bergant
,
A.
,
2000
, “
Advances in Unsteady Friction Modelling in Transient Pipe Flow
,”
Eighth International Conference on Pressure Surges: Safe Design and Operation of Industrial Pipe Systems, BHR Group Conference Series Publication
39
, The Hague, The Netherlands, Apr. 12–14, pp.
471
482
. https://www.researchgate.net/publication/256103329_Advances_in_Unsteady_Friction_Modelling_in_Transient_Pipe_Flow
34.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1999
,
Fluid Transients in Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
, 3rd ed.,
Van Nostrand Reinhold
,
New York
.
36.
Keramat
,
A.
, and
Haghighi
,
A.
,
2014
, “
Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes
,”
J. Hydraul. Eng. ASCE
,
140
(
12
), p.
04014058
.10.1061/(ASCE)HY.1943-7900.0000929
You do not currently have access to this content.