The motion of liquid filling a pipeline is impeded when the gas ahead of it cannot escape. Entrapped gas will lead to a significant pressure build-up in front of the liquid column, which slows down the column and eventually bounces it back. The pressure and temperature in the gas may become dangerously high, and for example, lead to fires and explosions caused by auto-ignition. This paper considers the case where the trapped gas can escape through a vent. One new element is that the pressure head of the liquid supply reservoir is fluctuating instead of staying constant. The obtained analytical and numerical solutions are utilized in parameter variation studies that give deeper insight in the system's behavior.
Issue Section:
Fluid-Structure Interaction
References
1.
Busch
, N.-P. G.
, and Grane
, T.
, 2015
, “Romeinen Vergruisden Spaanse Goudberg (Romans Milled Spanish Gold Mountain)
,” Historia Jubileumuitgave
, Bonnier Publications International AS, Oslo, Norway, pp. 128
–133
(in Dutch).2.
Streeter
, V. L.
, and Wylie
, E. B.
, 1967
, Hydraulic Transients
, McGraw-Hill
, New York
.3.
Kitagawa
, A.
, Urata
, E.
, and Takenaka
, T.
, 1975
, “On the Influence of Trapped Air on Transient Phenomena of Fluid Conduit
,” Trans. Jpn. Hydraul. Pneumat. Soc.
, 6
(2
), pp. 78
–83
(in Japanese).4.
Martin
, C. S.
, 1976
, “Entrapped Air in Pipelines
,” Fluid Engineering, Second International Conference on Pressure Surges
, London
, Sept., pp. 15
–28
.5.
Martin
, C. S.
, 1996
, “Experiences With Two-Phase Flow in Fluid Transients
,” Seventh International Conference on Pressure Surges
, Harrogate, UK
, Apr., pp. 65
–75
.6.
Lee
, N. H.
, and Martin
, C. S.
, 1999
, “Experimental and Analytical Investigation of Entrapped Air in a Horizontal Pipe
,” ASME
Paper No. FEDSM99-6881.7.
Martin
, C. S.
, and Lee
, N. H.
, 2000
, “Rapid Expulsion of Entrapped Air Through an Orifice
,” Eighth International Conference on Pressure Surges
, The Hague, The Netherlands
, Apr. 12–14, pp. 125
–132
.8.
Lee
, N. H.
, 2005
, “Effect of Pressurization and Expulsion of Entrapped Air in Pipelines
,” Ph.D. thesis
, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/116439.
Martin
, C. S.
, and Lee
, N. H.
, 2012
, “Measurement and Rigid Column Analysis of Expulsion of Entrapped Air From a Horizontal Pipe With an Exit Orifice
,” 11th International Conference on Pressure Surges
, Lisbon, Portugal
, Oct., pp. 537
–542
.10.
Hashimoto
, K.
, Imaeda
, M.
, and Osayama
, A.
, 1988
, “Transients of Fluid Lines Containing an Air Pocket or Liquid Column
,” J. Fluid Control
, 18
(4
), pp. 38
–54
.11.
Abreu
, J. M.
, Cabrera
, E.
, García-Serra
, J.
, and Izquierdo
, J.
, 1991
, “Boundary Between Elastic and Inelastic Models in Hydraulic Transients Analysis With Entrapped Air Pockets
,” IAHR, 9th Round Table on Hydraulic Transients With Water Column Separation
, Valencia, Spain
, pp. 159
–181
.12.
Cabrera
, E.
, Abreu
, J. M.
, Pérez
, R.
, and Vela
, A.
, 1992
, “Influence of Liquid Length Variation in Hydraulic Transients
,” ASCE J. Hydraul. Eng.
, 118
(12
), pp. 1639
–1650
.13.
Izquierdo
, J.
, Fuertes
, V. S.
, Cabrera
, E.
, Iglesias
, P. L.
, and Garcia-Serra
, J.
, 1999
, “Peak Pressure Evaluation in Pipelines With Entrapped Air Pockets
,” ASME
Paper No. FEDSM99-6882.14.
Izquierdo
, J.
, Fuertes
, V. S.
, Cabrera
, E.
, Iglesias
, P. L.
, and Garcia-Serra
, J.
, 1999
, “Pipeline Start-Up With Entrapped Air
,” IAHR J. Hydraul. Res.
, 37
(5
), pp. 579
–590
.15.
Fuertes
, V. S.
, Arregui
, F.
, Cabrera
, E.
, and Iglesias
, P. L.
, 2000
, “Experimental Setup of Entrapped Air Pockets Model Validation
,” Eighth International Conference on Pressure Surges
, The Hague, The Netherlands
, Apr., pp. 133
–145
.16.
Bagnold
, R. A.
, 1939
, “Interim Report on Wave-Pressure Research
,” J. Inst. Civ. Eng.
, 12
(7), pp. 201
–226
.17.
Brosset
, L.
, Ghidaglia
, J. M.
, Guilcher
, P. M.
, and Le Tarnec
, L.
, 2013
, “Generalized Bagnold Model
,” 23rd International Offshore and Polar Engineering Conference (ISOPE)
, Anchorage, AK
, July, pp. 209
–223
.18.
Ramkema
, C.
, 1978
, “A Model Law for Wave Impacts on Coastal Structures
,” 16th Conference on Coastal Engineering
, Hamburg, Germany
, Aug. 27–Sept. 3
, pp. 2308
–2327
.19.
Abrahamsen
, B. C.
, and Faltinsen
, O. M.
, 2011
, “The Effect of Air Leakage and Heat Exchange on the Decay of Entrapped Air Pocket Slamming Oscillations
,” Phys. Fluids
, 23
(10
), p. 102107
.20.
Abrahamsen
, B. C.
, and Faltinsen
, O. M.
, 2012
, “The Natural Frequency of the Pressure Oscillations Inside a Water-Wave Entrapped Air Pocket on a Rigid Wall
,” J. Fluids Struct.
, 35
, pp. 200
–212
.21.
Liou
, C. P.
, and Hunt
, W. A.
, 1996
, “Filling of Pipelines With Undulating Elevation Profiles
,” ASCE J. Hydraul. Eng.
, 122
(10
), pp. 534
–539
.22.
De Martino
, G.
, Fontana
, N.
, and Giugni
, M.
, 2008
, “Transient Flow Caused by Air Expulsion Through an Orifice
,” ASCE J. Hydraul. Eng.
, 134
(9
), pp. 1395
–1399
.23.
Zhang
, Y.
, and Vairavarnoorthy
, K.
, 2006
, “Transient Flow in Rapidly Filling Air-Entrapped Pipelines With Moving Boundaries
,” Tsinghua Sci. Technol.
, 11
(3
), pp. 313
–323
.24.
Zhou
, L.
, Liu
, D.
, Karney
, B.
, and Zhang
, Q.
, 2011
, “Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines
,” ASCE J. Hydraul. Eng.
, 137
(12
), pp. 1686
–1692
.25.
Zhou
, L.
, and Liu
, D.
, 2013
, “Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe
,” IAHR J. Hydraulic Res.
, 51
(4
), pp. 469
–474
.26.
Zhou
, L.
, Liu
, D.
, and Karney
, B.
, 2013
, “Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline
,” ASCE J. Hydraul. Eng.
, 139
(9
), pp. 949
–959
.27.
Zhou
, L.
, Liu
, D.
, Karney
, B.
, and Wang
, P.
, 2013
, “Phenomenon of White Mist in Pipelines Rapidly Filling With Water With Entrapped Air Pockets
,” ASCE J. Hydraul. Eng.
, 139
(10
), pp. 1041
–1051
.28.
Trindade
, B. C.
, and Vasconcelos
, J. G.
, 2013
, “Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions
,” ASCE J. Hydraul. Eng.
, 139
(9
), pp. 921
–934
.29.
Tijsseling
, A. S.
, Hou
, Q.
, Bozkuş
, Z.
, and Laanearu
, J.
, 2016
, “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines
,” ASME J. Pressure Vessel Technol.
, 138
(3
), p. 031301
.30.
Zhou
, F.
, Hicks
, F. E.
, and Steffler
, P. M.
, 2002
, “Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air
,” ASCE J. Hydraul. Eng.
, 128
(6
), pp. 625
–634
.31.
Zhou
, F.
, Hicks
, F.
, and Steffler
, P.
, 2004
, “Analysis of Effects of Air Pocket on Hydraulic Failure of Urban Drainage Infrastructure
,” Can. J. Civ. Eng.
, 31
(1
), pp. 86
–94
.32.
Vasconcelos
, J. G.
, and Wright
, J. W.
, 2009
, “Investigation of Rapid Filling of Poorly Ventilated Stormwater Storage Tunnels
,” IAHR J. Hydraul. Res.
, 47
(5
), pp. 547
–558
.33.
Vasconcelos
, J. G.
, and Wright
, J. W.
, 2011
, “Geysering Generated by Large Air Pockets Released Through Water-Filled Ventilation Shafts
,” ASCE J. Hydraul. Eng.
, 137
(5
), pp. 543
–555
.34.
Pozos-Estrada
, O.
, Pothof
, I.
, Fuentes-Mariles
, O. A.
, Dominguez-Mora
, R.
, Pedrozo-Acuña
, A.
, Meli
, R.
, and Peña
, F.
, 2015
, “Failure of a Drainage Tunnel Caused by an Entrapped Air Pocket
,” Urban Water J.
, 12
(6
), pp. 446
–454
.35.
Guarga
, R.
, Acosta
, A.
, and Lorenzo
, E.
, 1996
, “Dynamic Compression of Entrapped Air Pockets by Elastic Water Columns
,” IAHR, 18th Symposium on Hydraulic Machinery and Cavitation
, Valencia, Spain
, Sept., pp. 710
–719
.36.
Chaiko
, M. A.
, and Brinckman
, K. W.
, 2002
, “Models for Analysis of Water Hammer in Piping With Entrapped Air
,” ASME J. Fluids Eng.
, 124
(1
), pp. 194
–204
.37.
Wang
, K.-H.
, Shen
, Q.
, and Zhang
, B.
, 2003
, “Modeling Propagation of Pressure Surges With the Formation of an Air Pocket in Pipelines
,” Comput. Fluids
, 32
(9
), pp. 1179
–1194
.38.
Lai
, A.
, Hau
, K. F.
, Noghrehkar
, R.
, and Swartz
, R.
, 2000
, “Investigation of Waterhammer in Piping Networks With Voids Containing Non-Condensable Gas
,” Nucl. Eng. Des.
, 197
(1–2
), pp. 61
–74
.39.
Epstein
, M.
, 2008
, “A Simple Approach to the Prediction of Waterhammer Transients in a Pipe Line With Entrapped Air
,” Nucl. Eng. Des.
, 238
(9
), pp. 2182
–2188
.40.
Barna
, I. F.
, Imre
, A. R.
, Baranyai
, G.
, and Ézsöl
, G.
, 2010
, “Experimental and Theoretical Study of Steam Condensation Induced Water Hammer Phenomena
,” Nucl. Eng. Des.
, 240
(1
), pp. 146
–150
.41.
Martin
, C. S.
, 2013
, “Waterhammer in a Horizontal Pipe Induced by Slug Formation and Rapid Condensation
,” ASME
Paper No. PVP2013-97424.42.
Vecchio
, R. S.
, Sinha
, S. K.
, Bruck
, P. M.
, Esselman
, T. C.
, Zysk
, G.
, and Somrah
, D.
, 2015
, “The 2007 New York City Steam Explosion: Post-Accident Analysis
,” 12th International Conference on Pressure Surges
, Dublin, Ireland
, Nov., pp. 7
–17
.43.
Thorley
, A. R. D.
, and Main
, B. G.
, 1986
, “Spontaneous Combustion in Vapour Cavities Subjected to Fluid Transients in Pipelines
,” Fifth International Conference on Pressure Surges
, Hannover, Germany
, Sept., pp. 139
–147
.44.
Thorley
, A. R. D.
, and Main
, B. G.
, 1990
, “Cavity Dynamics and the Risk of Explosive Combustion in Pipelines
,” Sixth International Conference on Pressure Surges
, Cambridge, UK
, Oct., pp. 357
–370
.45.
Richardson
, S. M.
, Saville
, G.
, and Griffiths
, J. F.
, 1990
, “Autoignition—Occurrence and Effects
,” Trans. Inst. Chem. Eng., Part B
, 68
(4
), pp. 239
–244
.46.
Leishear
, R. A.
, 2017
, “Nuclear Power Plant Fires and Explosions—Part I: Plant Designs and Hydrogen Ignition
,” ASME
Paper No. PVP2017-66285.47.
Leishear
, R. A.
, 2017
, “Nuclear Power Plant Fires and Explosions—Part II: Hydrogen Ignition Overview
,” ASME
Paper No. PVP2017-66278.48.
Leishear
, R. A.
, 2017
, “Nuclear Power Plant Fires and Explosions—Part III: Hamaoka Piping Explosion
,” ASME
Paper No. PVP2017-66284.49.
Leishear
, R. A.
, 2017
, “Nuclear Power Plant Fires and Explosions—Part IV: Water Hammer Explosion Mechanism
,” ASME
Paper No. PVP2017-66279.50.
Leishear
, R. A.
, 2018
, “Pump Start-Ups Ignite Nuclear Power Plants: History, Law, and Risk
,” 13th International Conference on Pressure Surges
, Bordeaux, France
, Nov., pp. 13
–28
.51.
Bousso
, S.
, and Fuamba
, M.
, 2014
, “Numerical and Experimental Analysis of the Pressurized Wave Front in a Circular Pipe
,” ASCE J. Hydraul. Eng.
, 140
(3
), pp. 300
–312
.52.
Chosie
, C. D.
, Hatcher
, T. M.
, and Vasconcelos
, J. G.
, 2014
, “Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows
,” ASCE J. Hydraul. Eng.
, 140
(8
), pp. 1
–12
.53.
Zhang
, X.
, Yu
, B.
, Wang
, Y.
, Xie
, J.
, Qiu
, D.
, and Sun
, X.
, 2014
, “Numerical Study on the Commissioning Charge-Up Process of Horizontal Pipeline With Entrapped Air Pockets
,” Adv. Mech. Eng.
, 6
, p. 838926.54.
Martins
, S. C.
, Ramos
, H. M.
, and Almeida
, A. B.
, 2015
, “Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems
,” IAHR J. Hydraul. Res.
, 53
(5
), pp. 678
–686
.55.
van Vuuren
, S. J.
, 2015
, “Effective De-Aeration of Pipelines and the Use of Captured Air to Mitigate Dynamic Pressures
,” 12th International Conference on Pressure Surges
, Dublin, Ireland, Nov., pp. 171
–183
.http://www.ventomat.com.au/files/Effective%20deaeration%20and%20use%20the%20captured%20air%20to%20mitigate%20dynamic%20pressu....pdf56.
Zhou
, L.
, Liu
, D.
, Karney
, B.
, Wang
, H.
, and Malekpour
, A.
, 2015
, “Rapid Filling of an Open-Ended Pipeline With Entrapped Air
,” 12th International Conference on Pressure Surges
, Dublin, Ireland
, Nov., pp. 185
–197
.57.
Malekpour
, A.
, and Karney
, B.
, 2015
, “Exploring How Air Valves Change Transient Responses of Pipe Systems During Rapid Filling
,” 12th International Conference on Pressure Surges
, Dublin, Ireland
, Nov., pp. 199
–213
.58.
Hou
, Q.
, Wang
, S.
, Kruisbrink
, A. C. H.
, and Tijsseling
, A. S.
, 2015
, “Lagrangian Modelling of Fluid Transients in Pipelines With Entrapped Air
,” 12th International Conference on Pressure Surges
, Dublin, Ireland, Nov., pp. 215
–227
.https://www.researchgate.net/publication/292981119_Lagrangian_modelling_of_fluid_transients_in_pipelines_with_entrapped_air59.
Martins
, N. M. C.
, Soares
, A. K.
, Ramos
, H. M.
, and Covas
, D. I. C.
, 2015
, “Entrapped Air Pocket Analysis Using CFD
,” 12th International Conference on Pressure Surges
, Dublin, Ireland, Nov., pp. 229
–238
.https://www.researchgate.net/publication/299368816_Entrapped_air_pocket_analysis_using_CFD60.
Apollonio
, C.
, Balacco
, G.
, Fontana
, N.
, Giugni
, M.
, Marini
, G.
, and Ferruccio Piccinni
, A.
, 2016
, “Hydraulic Transients Caused by Air Expulsion
,” Water
, 8
(1
), pp. 1
–12
.61.
Bergant
, A.
, Karadžić
, U.
, and Tijsseling
, A. S.
, 2016
, “Dynamic Water Behaviour Due to One Trapped Air Pocket in a Laboratory Pipeline Apparatus
,” IOP Conf. Ser.: Earth Environ. Sci.
, 49
, p. 052007
.62.
Zhou
, L.
, Wang
, H.
, Karney
, B.
, Liu
, D.
, Wang
, P.
, and Guo
, S.
, 2018
, “Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline
,” ASCE J. Hydraul. Eng.
, 144
(8
), p. 04018045
.63.
Veilleux
, J.-C.
, and Shepherd
, J. E.
, 2018
, “Pressure and Stress Transients in Autoinjector Devices
,” Drug Delivery Transl. Res.
, 8
(5
), pp. 1238
–1253
.64.
Letelier
, S. M. F.
, and Leutheusser
, H. J.
, 1983
, “Unified Approach to the Solution of Problems of Unsteady Laminar Flow in Long Pipes
,” ASME J. Appl. Mech.
, 50
(1
), pp. 8
–12
.65.
Altstadt
, E.
, Carl
, H.
, Weis
, R.
, and Prasser
, H. M.
, 2008
, “Fluid-Structure Interaction During Artificially Induced Water Hammers in a Tube With a Bend—Experiments and Analyses
,” Multiphase Sci. Technol.
, 20
(3–4
), pp. 213
–238
.66.
Zhou
, L.
, Pan
, T.
, Wang
, H.
, Liu
, D.
, and Wang
, P.
, 2018
, “Rapid Air Expulsion Through an Orifice in a Vertical Water Pipe
,” IAHR J. Hydraul. Res.
(epub).67.
Li
, L.
, Zhu
, D. Z.
, and Huang
, B.
, 2018
, “Analysis of Pressure Transient Following Rapid Filling of a Vented Horizontal Pipe
,” Water
, 10
(11
), p. 1698
.68.
Belfroid
, S. P. C.
, 2017
, “Acoustical Characteristics of Single and Two-Phase Horizontal Pipe Flow Through an Orifice
,” ASME
Paper No. PVP2017-65732.69.
Douglas
, J. F.
, Gasiorek
, J. M.
, Swaffield
, J. A.
, and Jack
, L. B.
, 2011
, Fluid Mechanics
, 6th ed., Pearson Education
, Harlow, UK, Chap. 17.70.
Potter
, M. C.
, Wiggert
, D. C.
, and Ramadan
, B. H.
, 2017
, Mechanics of Fluids
, 5th ed., Cengage Learning
, Andover, NH, Chap. 9.71.
Biasi
, L.
, Prosperetti
, A.
, and Tozzi
, A.
, 1972
, “Collapse of One-Dimensional Cavities in Compressible Liquids
,” Phys. Fluids
, 15
(10
), pp. 1848
–1850
.72.
Goyder
, H.
, 2007
, “Gas Waterhammer
,” ASME
Paper No. PVP2007-26199.73.
Bozkuş
, Z.
, and Wiggert
, D. C.
, 1997
, “Liquid Slug Motion in a Voided Line
,” J. Fluids Struct.
, 11
(8
), pp. 947
–963
.74.
Tijsseling
, A. S.
, Hou
, Q.
, and Bozkuş
, Z.
, 2016
, “An Improved One-Dimensional Model for Liquid Slugs Traveling in Pipelines
,” ASME J. Pressure Vessel Technol.
, 138
(1
), p. 011301
.75.
Tijsseling
, A. S.
, Hou
, Q.
, and Bozkuş
, Z.
, 2015
, “Analytical Expressions for Liquid-Column Velocities in Pipelines With Entrapped Gas
,” ASME
Paper No. PVP2015-45184.76.
Tijsseling
, A. S.
, Hou
, Q.
, and Bozkuş
, Z.
, 2016
, “Analytical and Numerical Solution for a Rigid Liquid-Column Moving in a Pipe With Fluctuating Reservoir-Head and Venting Entrapped-Gas
,” ASME
Paper No. PVP2016-63193.77.
Tijsseling
, A. S.
, Hou
, Q.
, and Bozkuş
, Z.
, 2017
, “Analytical Solutions for Liquid Slugs and Pigs Traveling in Pipelines With Entrapped Gas
,” ASME
Paper No. PVP2017-65755.78.
Tijsseling
, A. S.
, Hou
, Q.
, and Bozkuş
, Z.
, 2018
, “Moving Liquid Column With Entrapped Gas Pocket and Fluid-Structure Interaction at a Pipe's Dead End: A Nonlinear Spring-Mass System
,” ASME
Paper No. PVP2018-84570.79.
Bergant
, A.
, Simpson
, A. R.
, and Tijsseling
, A. S.
, 2006
, “Water Hammer With Column Separation: A Historical Review
,” J. Fluids Struct.
, 22
(2
), pp. 135
–171
.80.
Porca
, P.
, Lema
, M.
, Rambaud
, P.
, and Steelant
, J.
, 2014
, “Experimental and Numerical Multiphase-Front Fluid Hammer
,” AIAA J. Propul. Power
, 30
(2
), pp. 368
–376
.81.
Steelant
, J.
, 2015
, “Multi-Phase Fluid-Hammer in Aerospace Applications
,” 12th International Conference on Pressure Surges
, Dublin, Ireland, Nov., pp. 21
–31
.https://www.researchgate.net/publication/284169896_Multi-Phase_Fluid-Hammer_in_Aerospace_ApplicationsCopyright © 2019 by ASME
You do not currently have access to this content.