The Department of Energy (DOE) handbook for airborne releases from nonreactor nuclear facilities bases its bounding airborne release fraction (ARF) for pressurized powders on tests conducted at Pacific Northwest Laboratory (PNL). An analysis is presented that correlates the ARF from these tests. The amount of powder that becomes airborne is correlated in terms of an adjusted airborne release fraction (AARF) equal to the product of the powder entrainment from the powder bed and the ratio of the total vessel volume to the volume occupied by the powder bed. Powder entrainments and release fractions at low pressures are correlated using a fluidized bed analogy. The analysis shows that the entrainment is enhanced by a sonic shock if the pressure prior to the rupture exceeds approximately 0.329 MPa (33 psig). A secondary, three-dimensional shock is predicted to occur at an initial pressure of approximately 2.39 MPa (332 psig). A correlation based on this analysis is used to predict the ARF for ruptures of vessels containing plutonium oxide. It is assumed that the oxide is pressurized by hydrogen that is radiolytically generated from adsorbed moisture.
Analysis of Powder Airborne Release Fractions for Vessel Ruptures
Savannah River Site,
Aiken, SC 29808
e-mail: james.laurinat@srnl.doe.gov
Savannah River Nuclear Solutions LLC,
Savannah River Site,
Aiken, SC 29808
e-mail: steve.hensel@srnl.doe.gov
Savannah River Site,
Aiken, SC 29808
e-mail: james.laurinat@srnl.doe.gov
Savannah River Nuclear Solutions LLC,
Savannah River Site,
Aiken, SC 29808
e-mail: steve.hensel@srnl.doe.gov
Contributed by the Pressure Vessel and Piping Division of ASME for publication in the JOURNAL OF PRESSURE VESSEL TECHNOLOGY. Manuscript received January 23, 2019; final manuscript received March 6, 2019; published online April 4, 2019. Editor: Young W. Kwon. The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.
Laurinat, J. E., and Hensel, S. J. (April 4, 2019). "Analysis of Powder Airborne Release Fractions for Vessel Ruptures." ASME. J. Pressure Vessel Technol. June 2019; 141(3): 031402. https://doi.org/10.1115/1.4043188
Download citation file: