In this study, failure pressure prediction was conducted in a pipeline with localized corrosion in base metal (BM), heat-affected zone (HAZ), and welding bead (WB) by finite element (FE) analysis. In the gas pipeline industry, there are methods (B31G, RESTRENGH, Shell, DNV, PCORR, and Fitnet FFS) and authors' approaches (Choi and Cronin) to determine the failure pressure. However, one disadvantage of these methods is that their equations do not consider damage corrosion at the HAZ or WB. They consider corrosion only in the BM. The corrosion shape is rectangular with a radius at the edges. In this study, the corrosion defect depth (d) was varied. The corrosion defect length (L) and the corrosion defect width (W) were equal. A type of rectangular corrosion defect with a radius at the edges in the longitudinal and circumferential directions was proposed. True stress–strain curves for BM, HAZ, and WB of an API 5 L X52 were introduced in the FE program. The results show that the pressure decreases as d, L, and W increase. This is because the damage corrosion is more severe as it grows, which causes the failure pressure to decrease.

References

1.
Caleyo
,
F.
,
Alfonso
,
L.
,
Alcántara
,
J.
, and
Hallen
,
J. M.
,
2008
, “
On the Estimation of Failure Rates of Multiple Pipeline Systems
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), p.
021704
.
2.
Alang
,
N. A.
,
Razak
,
N. A.
,
Shafie
,
K. A.
, and
Sulaiman
,
A.
,
2013
, “
Theoretical and Applied Mechanics
,”
13th International Conference on Fracture
, Beijing, China, June 16–21, pp.
1
10
.
3.
Fontana
,
M. G.
,
1987
,
Corrosion Engineering
,
McGraw-Hill
,
New York
, pp.
4
5
.
4.
Velazquez
,
J. C.
,
Caleyo
,
F.
,
Valor
,
V.
, and
Hallen
,
J. M.
,
2009
, “
Predictive Model for Pitting Corrosion in Buried Oil and Gas Pipelines
,”
Corrosion
,
65
(
5
), pp.
332
342
.
5.
Velázquez
,
J. C.
,
Caleyo
,
F.
,
Valor
,
A.
, and
Hallen
,
J. M.
,
2010
, “
Field Study—Pitting Corrosion of Underground Pipelines Related to Local Soil and Pipe Characteristics
,”
Corrosion
,
66
(
1
), p.
016001
.
6.
Velázquez
,
J. C.
,
Valor
,
A.
,
Caleyo
,
F.
,
Venegas
,
V.
,
Espina-Hernández
,
J. H.
,
Hallen
,
J. M.
, and
Lopez
,
M. R.
,
2009
, “
Pitting Corrosion Models Improve Integrity Management, Reliability
,”
Oil Gas J.
,
107
(
28
), pp.
56
62
.https://www.ogj.com/articles/print/volume-107/issue-28/Transportation/corrosion-conclusion-pitting-corrosion-models-improve-integrity-management-reliability.html
7.
Velázquez
,
J. C.
,
Valor
,
A.
,
Caleyo
,
F.
,
Venegas
,
V.
,
Espina-Hernández
,
J. H.
,
Hallen
,
J. M.
, and
Lopez
,
M. R.
,
2009
, “
Study Helps Model Buried Pipeline Pitting Corrosion
,”
Oil Gas J.
,
107
(
27
), pp.
64
73
.https://www.ogj.com/articles/print/volume-107/issue-27/Transportation/corrosion-1-study-helps-model-buried-pipeline-pitting-corrosion.html
8.
Qiao
,
Q.
,
Cheng
,
G.
,
Wu
,
W.
,
Li
,
Y.
,
Huang
,
H.
, and
Wei
,
Z.
,
2016
, “
Failure Analysis of a Corrosion at an Inhomogeneous Welded Joint in a Natural Gas Gathering Pipeline Considering the Combined Action of Multiple Factors
,”
Eng. Failure Anal.
,
64
, pp.
126
143
.
9.
Chen,
M.
,
J.
,
Dong
,
C. G.
,
Jakobsen
,
R. A.
, and
Bai
,
Y.
,
2000
, “
Assessment of Pipeline Girth Weld Defects
,”
Tenth International Offshore and Polar Engineering
, Seattle, WA, May 28–June 2, pp. 263–274.https://www.onepetro.org/conference-paper/ISOPE-I-00-149
10.
ASME B31G
,
1991
, “
ASME Manual for Determining the Remaining Strength of Corroded Pipelines
,” Supplement to ASME B31 Code for Pressure Piping, American Society of Mechanical Engineers, New York, Standard No. ASME B31G-1991.
11.
Kiefner
,
J. E.
, and
Vieth
,
P. H.
,
1989
, “
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,” Battelle Memorial Institute, Columbus, OH, Final Report on Project PR 3-805.
12.
Leis
,
N.
, and
Sthephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part II: Alternative Criterion
,”
Seventh International Offshore and Polar Engineering Conference,
Honolulu, HI, May 25–30, pp. 624–634.
13.
DNV,
2015
, “
Corroded Pipelines
,” Det Norske Veritas, Oslo, Norway, Standard No. DNV RP-F101.
14.
Klever
,
F. J.
,
Stewart
,
G.
, and
Valk
,
C. A. C.
,
1995
, “
New Developments in Burst Strength Predictions for Locally Corrode Pipes
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Copenhagen, Denmark, June 18–22, pp. 161–174.
15.
Qian
,
G.
,
Niffenegger
,
M.
, and
Li
,
S.
,
2011
, “
Probabilistic Analysis of Pipelines With Corrosion Defects by Using FITNET FFS Procedure
,”
Corros. Sci
,
53
(
3
), pp.
855
861
.
16.
CSA
,
1994
, “
CSA Z662: Oil and Gas Pipelines Systems
,” Canadian Standard Association, Mississauga, ON, Canada, Standard No. Z662-11.
17.
Swankie
,
T.
,
Owen
,
R.
,
Bood
,
R.
,
Chauhan
,
V.
, and
Gilbert
,
G.
,
2012
, “
Assessment of the Remaining Strength of Corroded Small Diameter (Below 6”) Pipeline and Pipework
,”
ASME
Paper No. IPC2012-90401.
18.
Wang
,
W.
,
Smith
,
M. Q.
,
Popelar
,
C. H.
, and
Maple
,
J. A.
,
1998
, “
A New Rupture Prediction Model for Corroded Pipeline Under Combined Loading
,”
ASME
Paper No. IPC1998-2064.
19.
API
,
2009
, “
Fitness-For Service
,” American Petroleum Institute, Washington, DC, Standard No. API 579-1/ASME FFS-1.
20.
Choi
,
J. B.
,
Goo
,
B. K.
,
Kim
,
J. C.
,
Kim
,
Y. J.
, and
Kim
,
W. S.
,
2003
, “
Development of Limit Load Solutions for Corroded Gas Pipelines
,”
Int. J. Pressure Vessels Piping
,
80
(
2
), pp.
121
128
.
21.
Zhu
,
X. K.
, and
Brian
,
N. L.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipeline
,”
Int. J. Pressure Vessels Piping
,
83
(
9
), pp.
663
671
.
22.
Benjamin
,
A. C.
, and
Andrade
,
E. Q.
,
2003
, “
Modified Method for the Assessment of the Remaining Strength of Corroded Pipelines
,”
Rio Pipeline Conference
, Oct. 22–24, Paper No. IBP 413-03.
23.
Gajdos
,
L.
, and
Sperl
,
M.
,
2012
, “
Determination of Burst Pressure of Thin-Walled Pressure Vessels
,”
18th International Conference on Engineering Mechanics
, Svratka, Czech Republic, May 14–17, Paper No. 67.2012.
24.
Klever
,
F. J.
,
1992
, “
Burst Strength of Corroded Pipe: ‘Flow Stress’ Revisited
,”
24th Annual Offshore Technology Conference
, Houston, TX, May 4–7, Paper No.
OTC-7029-MS
.
25.
Stewart
,
G.
,
Klever
,
F. J.
, and
Ritchie
,
D.
,
1994
, “
An Analytical Model to Predict the Burst Capacity of Pipeline
,”
International Conference on Offshore Mechanics and Artic Engineering
, Houston, TX, Feb. 27–Mar. 3, pp.
177
188
.
26.
Cronin
,
D. S.
, and
Pick
,
R. J.
,
2000
, “
A New Multi-Level Assessment Procedure for Corroded Line Pipe
,”
ASME
Paper No. IPC2000-194.
27.
Zhang
,
Y. M.
,
Tan
,
T. K.
,
Xiao
,
Z. M.
,
Zhang
,
W. G.
, and
Ariffin
,
M. Z.
,
2016
, “
Failure Assessment on Offshore Girth Welded Pipeline Due to Corrosion Defects
,”
Fatigue Fract. Eng. Mater. Sruct.
,
39
(
4
), pp.
453
466
.
28.
Byvoishchik
,
L. M.
,
Luchkin
,
R. S.
, and
Platonov
,
S. Y.
,
2010
, “
Structural Factor of the Corrosion Ad Mechanical Strength of Welded Joints in Oil Transmission Pipes
,”
Weld. Int.
,
24
(
1
), pp.
23
28
.
29.
Wu
,
W. Y.
,
Hu
,
S. S.
, and
Shen
,
J. Q.
,
2015
, “
Microstructure, Mechanical Properties and Corrosion Behavior of Laser Welded Dissimilar Joints Between Ferritic Stainless Steel and Carbon Steel
,”
Mater. Des.
,
65
, pp.
855
861
.
30.
Alawadhi
,
K.
, and
Robinson
,
M. J.
,
2011
, “
Preferential Weld Corrosion of X65 Pipeline Steel Flowing Brines Containing Carbon Dioxide
,”
Corros. Eng. Sci. Technol.
,
46
(
4
), pp.
318
329
.
31.
Alawadhi
,
K.
,
Aloraier
,
A. S.
,
Joshi
,
S.
,
Alsarraf
,
J.
, and
Swilem
,
S.
,
2013
, “
Investigation on Preferential Corrosion of Welded Carbon Steel Under Flowing Conditions by EIS
,”
J. Mater. Eng. Perform.
,
22
(
8
), pp.
2403
2410
.
32.
Adegbite
,
M. A.
,
Robinson
,
M. J.
, and
Impey
,
S. A.
,
2014
, “
The Influence of Hydrodynamics on the Preferential Weld Corrosion of X65 Line Pipe Steel in Flowing Brine Containing Carbon Dioxide
,” Corrosion, San Antonio, TX, Mar. 9–13, Paper No.
NACE-2014-3796
.https://www.onepetro.org/conference-paper/NACE-2014-3796
33.
Barker
,
R.
,
Hu
,
X. M.
, and
Neville
,
A.
,
2013
, “
The Influence of High Shear and Sand Impingement on Preferential Weld Corrosion of Carbon Steel Pipework in CO2-Saturated Environments
,”
Tribol. Int.
,
68
, pp.
17
25
.
34.
Saleem
,
B.
,
Ahmed
,
F.
,
Rafiq
,
M. A.
,
Ajmal
,
M.
, and
Ali
,
L.
,
2014
, “
Stress Corrosion Failure of an X52 Grade Gas Pipeline
,”
Eng. Failure Anal.
,
46
, pp.
157
165
.
35.
Chauhan
,
V.
,
Fordyce
,
I.
,
Gilliver
,
J.
,
Peravali
,
S.
,
Connel
,
A.
, and
Thompson
,
I.
,
2012
, “
Failure Investigation of a Natural Gas Transmission Pipeline
,”
ASME
Paper No. IPC2012-90223.
36.
ASME B31G,
2012
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,” Supplement to ASME B31 Code for Pressure Piping, American Society of Mechanical Engineers, New York, Standard No. ASME B31G-2012.
37.
Terán
,
G.
,
Capula
,
S.
,
Velázquez
,
J. C.
,
Fernández
,
M. J.
,
Angeles
,
D.
, and
Herrera
,
H.
,
2017
, “
Failure Pressure Estimations for Pipes With Combined Corrosion Defects on the External Surface: A Comparative Study
,”
Int. J. Electrochem. Sci.
,
12
, pp.
10152
10176
.http://www.electrochemsci.org/papers/vol12/121110152.pdf
38.
Mokhtari
,
M.
,
Robert
,
E.
, and
Melchers
,
A.
,
2018
, “
New Approach to Assess the Remaining Strength of Corroded Steel Pipes
,”
Eng. Failure Anal.
,
93
, pp.
144
156
.
39.
Adib-Ramezani
,
H.
,
Jeong
,
J.
, and
Pluvinage
,
G.
,
2006
, “
Structural Integrity Evaluation of X52 Gas Pipes Subjected to External Corrosion Defects Using the SINTAP Procedure
,”
Int. J. Pressure Vessels Piping
,
83
(
6
), pp.
420
432
.
40.
Adib
,
H.
,
Jallouf
,
S.
,
Schmitt
,
C.
,
Carmasol
,
A.
, and
Pluvinage
,
G.
,
2007
, “
Evaluation of the Effect of Corrosion Defects on the Structural Integrity of X52 Pipelines Using the SINTAP Procedure and Notch Theory
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
123
131
.
41.
Fernadez-Cueto
,
M. J.
,
Capula-Colindres
,
S.
,
Angeles-Herrera
,
D.
,
Velazquez
,
J.
, and
Terán
,
G.
,
2018
, “
Analysis of 3D Planar Laminations in a Welded Section of API 5 L X52 Applying the Finite Element Method
,”
Soldagem Inspecao
,
23
(
1
), pp.
17
31
.
42.
BSI,
1991
, “
Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures
,” British Standards Institute, London, Standard No. PD6493.
43.
Liu
,
X.
,
Zhang
,
H.
,
Li
,
M.
,
Duan
,
Q.
, and
Chen
,
Y.
,
2016
, “
Failure Analysis of Oil Tubes Containing Corrosion Defects Based on Finite Element Method
,”
Int. J. Electrochem. Sci.
,
11
, pp.
5180
5196
.http://www.electrochemsci.org/papers/vol11/110605180.pdf
44.
Caleyo
,
F.
,
Gonzalez
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
77
86
.
45.
Stephens
,
D. R.
, and
Leis
,
B. N.
,
1997
, “
Material and Geometry Factors Controlling the Failure of Corrosion Defects in Piping
,” ASME Pressure Vessels and Piping Conference, Orlando, Florida, United States, July 27–31.
46.
ANSYS
,
2013
, “
Introduction to ANSYS for Release 15
,”
ANSYS
,
Canonsburg, PA
.
47.
Adalla
,
F. J. E.
,
Machado
,
R. D.
,
Bertin
,
R. J.
, and
Valentini
,
M. D.
,
2014
, “
On the Failure Pressure of Pipeline Containing Wall Reduction and Isolated Pit Corrosion Defects
,”
Comput. Struct.
,
132
, pp.
22
33
.
48.
Bedairi
,
B.
,
Cronin
,
D.
,
Hosseini
,
A.
, and
Plumtree
,
A.
,
2012
, “
Failure Predictions for Crack-In-Corrosion Defects in Natural Gas Transmission Pipelines
,”
Int. J. Pressure Vessels Piping
,
96–97
, pp.
90
99
.
49.
Ma
,
B.
,
Shuai
,
J.
,
Liu
,
D.
, and
Xu
,
K.
,
2013
, “
Assessment on Failure Pressure of High Strength Pipeline With Corrosion Defects
,”
Eng. Failure Anal.
,
32
, pp.
209
219
.
50.
Motta
,
R. S.
,
Alfonso
,
S. M. B.
,
Willmersdorf
,
R. B.
,
Lyra
,
P. R. M.
, and
De Andrade
,
E. Q.
,
2010
, “
Automatic Modeling and Analysis of Pipelines With Colonies of Corrosion Defects
,” Asociación Argentina de Mecánica Computacional, Buenos Aires, Argentina, Vol. XXIX, pp.
7871
7890
.
51.
Dick
,
I.
, and
Inegiyemiema
,
M.
,
2014
, “
Predicting the Structural Response of a Corroded Pipelines Using Finite Element (FE) Analysis
,”
Int. J. Sci. Eng. Res.
,
5
(
11
), pp.
194
207
.https://www.ijser.org/researchpaper/PREDICTING-THE-STRUCTURAL-RESPONSE-OF-A-CORRODED-PIPELINE.pdf
52.
Oh
,
C. K.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.
53.
Han
,
C. J.
,
Zhang
,
H.
, and
Zhang
,
J.
,
2016
, “
Failure Pressure Analysis of the Pipe With Inner Corrosion Defect by FEM
,”
Int. J. Electrochem. Sci.
,
11
, pp.
5046
5062
.http://www.electrochemsci.org/papers/vol11/110605046.pdf
54.
Su
,
C.-L.
,
Li
,
X.
, and
Zhou
,
J.
,
2016
, “
Failure Pressure Analysis of Corroded Moderate to High Strength Pipelines
,”
China Ocean. Eng.
,
30
(
1
), pp.
69
82
.
55.
Belachew
,
C. T.
,
Che
,
I. M.
, and
Karuppanan
,
S.
,
2009
, “
Evaluation of Available Codes for Capacity Assessment of Corroded Pipelines
,”
NACE East Asian and Pacific Regional Conference and Expositions
, Kuala Lumpur, Malaysia, July 13–15.https://eprints.utp.edu.my/1772/
56.
Medjo
,
B.
,
Rakin
,
M.
,
Arsic
,
M.
,
ZSarkocevic
,
Z.
,
Zrilic
,
M.
, and
Putic
,
S.
,
2012
, “
Determination of the Load Carrying Capacity of Damage Pipes Using Local Approach to Fracture
,”
Mater. Trans.
,
53
(
1
), pp.
185
190
.
57.
Cronin
,
D. S.
, and
Pick
,
R. J.
,
2002
, “
Predictions of the Failure Pressure for Complex Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
4
), pp.
279
287
.
58.
Xu
,
L. Y.
, and
Cheng
,
Y. F.
,
2012
, “
Reliability and Failure Pressure Predictions of Various Grades of Pipelines Steel in the Presence of Corrosion Defects and Pre-Strain
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
75
84
.
59.
Zhou
,
W.
, and
Huang
,
G. X.
,
2012
, “
Model Error Assessment of Burst Capacity Models for Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
99
(
100
), pp.
1
8
.
60.
Mohd
,
M. H. B.
,
Kim
,
D. W.
,
Lee
,
B. J.
,
Kim
,
D. K.
,
Seo
,
J. K.
, and
Paik
,
J. K.
,
2014
, “
On the Burst Strength Capacity of an Aging Subsea Gas Pipeline
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
4
), p.
041402
.
61.
Sviatoslav
,
T.
, and
Bushinskaya
,
A.
,
2016
,
Diagnostics and Reliability of Pipeline Systems
,
Springer
,
New York
, pp.
9
43
.
You do not currently have access to this content.