Many pipelines are unpiggable, which means they cannot be examined by in-line inspections (ILI). Existing industry practice for integrity assessment of unpiggable pipelines is not risk based, which precludes optimal allocation of inspection and maintenance resources. A framework for risk-based integrity assessment of unpiggable pipelines subject to internal corrosion is presented. The framework considers localized corrosion and microbiologically influenced corrosion (MIC) by combining flow and corrosion analysis for probability and consequence analysis as part of a quantitative risk analysis. Primary results of the application of the proposed framework show that it is applicable and beneficial for inspection and maintenance cost optimization.

References

1.
Dziubinski
,
M.
,
Fratczak
,
M.
, and
Markowski
,
A. S.
,
2006
, “
Aspects of Risk Analysis Associated With Major Failures of Fuel Pipelines
,”
J. Loss Prev. Process Ind.
,
19
(
5
), pp.
399
408
.
2.
Teixeira
,
A. P.
,
Soares
,
C. G.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
.
3.
Papadakis
,
G. A.
,
1999
, “
Major Hazard Pipelines: A Comparative Study of Onshore Transmission Accidents
,”
J. Loss Prev. Process Ind.
,
12
(
1
), pp.
91
107
.
4.
El-Abbasy
,
M. S.
,
Senouci
,
A.
,
Zayed
,
T.
,
Parvizsedghy
,
L.
, and
Mirahadi
,
F.
,
2016
, “
Unpiggable Oil and Gas Pipeline Condition Forecasting Models
,”
J. Perform. Constr. Facil.
,
30
(
1
), p.
04014202
.
5.
ASME,
2014
, “
Managing System Integrity of Gas Pipelines
,” American Society of Mechanical Engineers, New York, Standard No.
B31.8S-2014
.https://www.asme.org/products/codes-standards/b318s-2014-managing-system-integrity-gas-(1)
6.
Restrepo
,
C. E.
,
Simonoff
,
J. S.
, and
Zimmerman
,
R.
,
2009
, “
Causes, Cost Consequences, and Risk Implications of Accidents in U.S. Hazardous Liquid Pipeline Infrastructure
,”
Int. J. Crit. Infrastruct. Prot.
,
2
(
1–2
), pp.
38
50
.
7.
Shabarchin
,
O.
, and
Tesfamariam
,
S.
,
2016
, “
Internal Corrosion Hazard Assessment of Oil & Gas Pipelines Using Bayesian Belief Network Model
,”
J. Loss Prev. Process Ind.
,
40
, pp.
479
495
.
8.
Siler-Evans
,
K.
,
Hanson
,
A.
,
Sunday
,
C.
,
Leonard
,
N.
, and
Tumminello
,
M.
,
2014
, “
Analysis of Pipeline Accidents in the United States From 1968 to 2009
,”
Int. J. Crit. Infrastruct. Prot.
,
7
(
4
), pp.
257
269
.
9.
Alberta Energy Regulator
,
2013
, “
Pipeline Performance in Alberta 1990–2012
,” Alberta Energy Regulator, Calgary, AB, Canada, Report 2013-B.
10.
Lam
,
C.
,
2015
, “
Statistical Analyses of Historical Pipeline Incident Data With Application to the Risk Assessment of Onshore Natural Gas Transmission Pipelines
,”
Master's thesis
, The University of Western Ontario, London, ON, Canada.https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=4525&context=etd
11.
PHMSA
,
2018
, “
Pipeline Incident Flagged Files
,” Pipeline and Hazardous Materials Safety Administration, Washington, DC.
12.
Koch
,
G. H.
,
Brongers
,
M. P. H.
,
Thompson
,
N. G.
,
Virmani
,
Y. P.
, and
Payer
,
J. H.
,
2002
, “
Corrosion Cost and Preventive Strategies in the United States
,” Federal Highway Administration, McLean, VA, Report No.
FHWA-RD-01-156
.https://www.nace.org/uploadedfiles/publications/ccsupp.pdf
13.
Kilbane
,
J.
,
2014
, “
Forensic Analysis of Failed Pipe: Microbiological Investigations
,” NACE International Corrosion, San Antonio, TX, Mar. 9–13, Paper No.
3789
.https://www.onepetro.org/conference-paper/NACE-2014-3789
14.
Neria-González
,
I.
,
Wang
,
E. T.
,
Ramírez
,
F.
,
Romero
,
J. M.
, and
Hernández-Rodríguez
,
C.
,
2006
, “
Characterization of Bacterial Community Associated to Biofilms of Corroded Oil Pipelines From the Southeast of Mexico
,”
Anaerobe
,
12
(
3
), pp.
122
133
.
15.
Rajasekar
,
A.
,
Anandkumar
,
B.
,
Maruthamuthu
,
S.
,
Ting
,
Y.-P.
, and
Rahman
,
P. K. S. M.
,
2010
, “
Characterization of Corrosive Bacterial Consortia Isolated From Petroleum-Product-Transporting Pipelines
,”
Appl. Microbiol. Biotechnol.
,
85
(
4
), pp.
1175
1188
.
16.
Revie
,
R. W.
,
2015
,
Oil and Gas Pipelines: Integrity and Safety Handbook
,
Wiley
,
Hoboken, NJ
.
17.
CSA
,
2016
, “
Oil and Gas Pipeline Systems
,” Canadian Standards Association, Mississauga, ON, Canada, Standard No.
Z662-15:2016
.https://store.csagroup.org/ccrz__ProductDetails?viewState=DetailView&cartID=&sku=CAN/CSA-Z662-15
18.
Mora
,
R.
,
Hopkins
,
P.
,
Cote
,
E.
, and
Shie
,
T.
,
2016
,
Pipeline Integrity Management Systems a Practical Approach
,
ASME Press
,
New York
.
19.
Mohitpour
,
M.
,
Murray
,
M. A.
,
McManus
,
M.
, and
Colquhoun
,
I.
,
2010
,
Pipeline Integrity Assurance: A Practical Approach
,
ASME Press
,
New York
.
20.
API
,
2013
, “
API Recommended Practice 1160: Managing System Integrity for Hazardous Liquids Pipelines
,” American Petroleum Institute, Washington, DC, Standard No.
API STD 1160
.https://global.ihs.com/doc_detail.cfm?document_name=API%20STD%201160&item_s_key=00365236
21.
Kishawy
,
H. A.
, and
Gabbar
,
H. A.
,
2010
, “
Review of Pipeline Integrity Management Practices
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
373
380
.
22.
NACE International
,
2016
, “
Multiphase Flow Internal Corrosion Direct Assessment (MP-ICDA) Methodology for Pipelines
,” Houston, TX, Standard No.
NACE SP0116-2016
.https://store.nace.org/sp0116-2016-multiphase-flow-internal-corrosion-direct-assessment-mp-icda-2
23.
NACE International
,
2016
, “
Internal Corrosion Direct Assessment Methodology for Pipelines Carrying Normally Dry Gas (DG-ICDA)
,” Houston, TX, Standard No.
NACE SP0206-2016
.https://store.nace.org/sp0206-2006-internal-corrosion-direct-assessm
24.
NACE International
,
2010
, “
Wet Gas Internal Corrosion Direct Assessment Methodology for Pipelines
,” Houston, TX, Standard No.
NACE SP0110-2010
.https://www.techstreet.com/standards/nace-sp0110-2010?product_id=1766066
25.
NACE International
,
2008
, “
Internal Corrosion Direct Assessment Methodology for Liquid Petroleum Pipelines (LP-ICDA)
,” Houston, TX, Standard No.
NACE SP0208-2008
.https://store.nace.org/sp0208-2008
26.
Benjamin
,
J. R.
, and
Cornell
,
C. A.
,
1970
,
Probability, statistics, and Decision for Civil Engineers
,
McGraw-Hill
,
Mineola, NY
.
27.
Faber
,
M. H.
,
2012
,
Statistics and Probability Theory
(Pursuit of Engineering Decision Support),
Springer
,
New York
.
28.
Straub
,
D.
,
2004
, “
Generic Approaches to Risk Based Inspection Planning for Steel Structures
,” Ph.D. thesis, vdf Hochschulverlag AG, Zürich, Switzerland.
29.
González
,
C. M.
,
Arumugam
,
S.
, and
Teevens
,
P.
,
2016
, “
MP-ICDA Analysis on Block 12 and Block 15 Gathering Pipelines on Petroamazonas EP in Ecuador
,” NACE International Corrosion, Vancouver, BC, Canada, Mar. 6–10 Paper No. 7089.
30.
Straub
,
D.
, and
Faber
,
M. H.
,
2005
, “
Risk Based Inspection Planning for Structural Systems
,”
Struct. Saf.
,
27
(
4
), pp.
335
355
.
31.
Melo
,
C.
,
Dann
,
M.
,
Hugo
,
R.
, and
Janeta
,
A.
,
2017
, “
A Framework for the Probabilistic Integrity and Risk Assessment of Unpiggable Pipelines
,” NACE International Corrosion, New Orleans, LA, Mar. 26–30, Paper No.
9560
.https://www.onepetro.org/conference-paper/NACE-2017-9560
32.
Steinvoorte
,
T.
,
2015
, “
Unpiggable Pipelines
,”
Oil and Gas Pipelines: Integrity and Safety Handbook, R. W. Revie, ed.
,
Wiley
,
Hoboken, NJ
, pp.
545
555
.
33.
Papavinasam
,
S.
,
2014
, “
Mechanisms
,”
Corrosion Control in the Oil and Gas Industry
,
Elsevier
,
San Diego, CA
, pp.
249
300
.
34.
Palacios
,
C.
,
2016
,
Corrosion and Asset Integrity Management for Upstream Installations in the Oil/Gas Industry: The Journey of a Corrosion/Integrity Engineer—Real Life Experiences
,
Basenji Studios, LLC
,
Bellaire, TX
.
35.
Nyborg
,
R.
,
2010
, “
CO2 Corrosion Models for Oil and Gas Production Systems
,” NACE International Corrosion, San Antonio, TX, Mar. 14–18, Paper No.
10371
.https://www.onepetro.org/conference-paper/NACE-10371
36.
Sand
,
K.
,
Deng
,
C.
,
Teevens
,
P.
,
Robertson
,
D.
, and
Smyth
,
T.
,
2005
, “
Corrosion Engineering Assessments Via a Predictive Tool
,”
Tri-Service Corrosion Conference
,
Orlando, FL
, pp.
14
18
.
37.
Deng
,
C.
,
Sand
,
K.
, and
Teevens
,
P. J.
,
2006
, “
A Web-Based Software for Prediction of the Internal Corrosion of Sweet and Sour Multiphase Pipelines
,” NACE International Corrosion, San Diego, CA, Mar. 12–16, Paper No. 06565.
38.
Zheng
,
Y.
,
Ning
,
J.
,
Brown
,
B.
, and
Nešić
,
S.
,
2016
, “
Advancement in Predictive Modeling of Mild Steel Corrosion in CO2 and H2S Containing Environments
,”
Corrosion
,
72
(
5
), pp.
679
691
.
39.
Nešić
,
S.
,
2007
, “
Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines—A Review
,”
Corros. Sci.
,
49
(
12
), pp.
4308
4338
.
40.
Papavinasam
,
S.
,
Revie
,
R. W.
,
Friesen
,
W. I.
,
Doiron
,
A.
, and
Panneerselvam
,
T.
,
2006
, “
Review of Models to Predict Internal Pitting Corrosion of Oil and Gas Pipelines
,”
Corros. Rev.
,
24
(
3–4
), pp.
173
230
.
41.
Nyborg
,
R.
,
2002
, “
Overview of CO2 Corrosion Models for Wells and Pipelines
,” NACE International Corrosion, Denver, CO, Apr. 7–11, Paper No. 02233.
42.
Kilbane
,
J. J.
,
2014
, “
Monitoring Pipelines for Microbiologically Influenced Corrosion
,”
Mater. Perform.
,
53
(
12
), pp.
68
71
.https://mp.epubxp.com/i/419826-dec-2014
43.
Sooknah
,
R.
,
Papavinasa
,
S.
, and
Revie
,
R. W.
,
2007
, “
Modelling the Occurrence of Microbiologically Influenced Corrosion
,” NACE International Corrosion, Nashville, TN, Mar. 11–15, Paper No.
07515
.https://www.onepetro.org/conference-paper/NACE-07515
44.
Papavinasam
,
S.
,
2014
, “
Modeling—Internal Corrosion
,”
Corrosion Control in the Oil and Gas Industry
,
Elsevier
,
San Diego, CA
, pp.
301
360
.
45.
King
,
R. A.
,
2007
, “
Trends and Developments in Microbiologically-Induced Corrosion in the Oil and Gas Industry
,”
J. Pipeline Eng.
,
6
(
4
), pp.
225
230
.http://pipedata.net/downloads/papers/2138s.pdf#page=35
46.
Nyborg
,
R.
,
Andersson
,
P.
, and
Nordsveen
,
M.
,
2000
, “
Implementation of CO2 Corrosion Models in a Three-Phase Fluid Flow Model
,” NACE International Corrosion, Orlando, FL, Mar. 26–31, Paper No.
00048
.https://www.onepetro.org/conference-paper/NACE-00048
47.
Stewart
,
M.
, and
Melchers
,
R. E.
,
1997
,
Probabilistic Risk Assessment of Engineering Systems
,
Springer
,
Baffins Lane, Chichester, UK
.
48.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley & Son Ltd
,
Chichester, UK
.
49.
Heidary
,
R.
,
Gabriel
,
S. A.
,
Modarres
,
M.
,
Groth
,
K. M.
, and
Vahdati
,
N.
,
2018
, “
A Review of Data-Driven Oil and Gas Pipeline Pitting Corrosion Growth Models Applicable for Prognostic and Health Management
,”
Int. J. Progn. Health Manage.
,
9
(
1
), pp. 1–13.
50.
Maes
,
M. A.
,
Faber
,
M. H.
, and
Dann
,
M. R.
,
2009
, “
Hierarchical Modeling of Pipeline Defect Growth Subject to ILI Uncertainty
,”
ASME
Paper No. OMAE2009-79470.
51.
Straub
,
D.
,
2014
, “
Engineering Risk Assessment
,”
Risk-A Multidisciplinary Introduction
,
Springer
,
Basel, Switzerland
, pp.
333
362
.
52.
ISO,
2006
, “
Petroleum and Natural Gas Industries—Pipeline Transportation Systems—Reliability-Based Limit State Methods
,” International Standards Organization, Geneva, Switzerland, Standard No.
ISO 16708-2006
.https://www.iso.org/standard/31046.html
53.
Lentz
,
A.
,
2007
, “
Acceptability of Civil Engineering Decisions Involving Human Consequences
,”
Ph.D. thesis
, Technical University of Munich, Munich, Germany.https://mediatum.ub.tum.de/doc/618431/618431.pdf
54.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(
6
), pp.
43
55
.
55.
Taitel
,
Y.
, and
Dukler
,
A.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
56.
Bejan
,
A.
, and
Kraus
,
A.
,
2003
,
Heat Transfer Handbook
,
Wiley
,
Hoboken, NJ
.
57.
Zhu
,
Z.
,
Sand
,
K. W.
, and
Teevens
,
P. J.
,
2010
, “
Solids Deposition in Liquid Petroleum (oil) and Wet-gas Pipelines for Internal Corrosion Predictive Modelling (ICPM)
,”
Northern Area Western Conference (NACE)
,
Calgary, AB, Canada
,
Feb. 15–18
.
58.
Dann
,
M. R.
, and
Huyse
,
L.
,
2018
, “
The Effect of Inspection Sizing Uncertainty on the Maximum Corrosion Growth in Pipelines
,”
Struct. Saf.
,
70
, pp.
71
81
.
59.
Papavinasam
,
S.
,
Doiron
,
A.
, and
Revie
,
R. W.
,
2010
, “
Model to Predict Internal Pitting Corrosion of Oil and Gas Pipelines
,”
Corrosion
,
66
(
3
), p.
035006
.
60.
Zhang
,
S.
, and
Zhou
,
W.
,
2013
, “
System Reliability of Corroding Pipelines Considering Stochastic Process-Based Models for Defect Growth and Internal Pressure
,”
Int. J. Pressure Vessels Piping
,
111
, pp.
120
130
.
61.
Papavinasam
,
S.
,
2014
, “
Monitoring—Internal Corrosion
,”
Corrosion Control in the Oil and Gas Industry
, Vol.
8
,
Elsevier
,
San Diego, CA
, pp.
425
528
.
62.
Papavinasam
,
S.
,
2014
, “
Mitigation—Internal Corrosion
,”
Corrosion Control in the Oil and Gas Industry
, Vol.
7
,
Elsevier
,
San Diego, CA
, pp.
361
424
.
63.
Hedges
,
B.
,
Paisley
,
D.
, and
Woollam
,
R. C.
,
2000
, “
The Corrosion Inhibitor Availability Model
,” NACE International Corrosion, Orlando, FL, Mar. 26–31, Paper No.
00034
.https://www.onepetro.org/conference-paper/NACE-00034
64.
Ellinas
,
C. P.
,
Raven
,
P. W. J.
,
Walker
,
A. C.
, and
Davies
,
P.
,
1987
, “
Limit State Philosophy in Pipeline Design
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
1
), pp.
9
22
.
65.
Cegla
,
F.
,
2014
, “
Manual UT versus Permanently Installed Sensors
,”
Seventh European Workshop on Structural Health Monitoring (EWSHM)
,
Nantes, France
,
July 8–11
.
66.
Haladuick
,
S.
, and
Dann
,
M. R.
,
2018
, “
Decision Making for Long-Term Pipeline System Repair or Replacement
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
4
(
2
), pp.
1
11
.
67.
Haladuick
,
S.
, and
Dann
,
M. R.
,
2018
, “
Value of Information-based Decision Analysis of the Optimal Next Inspection Type for Deteriorating Structural Systems
,”
Struct. Infrastruct. Eng.
,
14
(
9
), pp.
1283
1292
.
You do not currently have access to this content.