This work is concerned with the development of a modeling framework to predict the effects of tempered–untempered martensite heterogeneity on the thermomechanical performance of welded material. A physically based viscoplasticity model for the intercritical heat-affected zone (ICHAZ) for 9Cr steels (e.g., P91, P92) is presented in this work, with the ICHAZ represented as a mixture of tempered and untempered martensite. The constitutive model includes dislocation-based Taylor hardening and damage for different material phases. A sequentially coupled thermal–mechanical welding simulation is conducted to predict the volume fraction compositions for the various weld-affected material zones in a cross-weld (CW) specimen. The out-of-phase cyclic thermomechanical (25 °C to 600 °C) performance of notched and plain samples is comparatively assessed for a range of different tempered–untempered martensitic material heterogeneities. It is shown that the heterogeneity in a simulated CW material is highly detrimental to thermal cyclic performance.

References

1.
Potirniche
,
G.
,
Charit
,
I.
,
Rink
,
K.
, and
Barlow
,
F.
,
2013
, “
Prediction and Monitoring Systems of Creep-Fracture Behaviour of 9Cr-1Mo Steels for Reactor Pressure Vessels
,” University of Idaho, Moscow, ID, Report No.
09-835 (09-458)
.https://www.osti.gov/servlets/purl/1110643
2.
Francis
,
J. A.
,
Mazur
,
W.
, and
Bhadeshia
,
H. K. D. H.
,
2006
, “
Type IV Cracking in Ferritic Power Plant Steels
,”
Mater. Sci. Technol.
,
22
(
12
), pp.
1387
1395
.
3.
Ennis
,
P. J.
, and
Czyrska-Filemonowicz
,
A.
,
2002
, “
Recent Advances in Creep Resistant Steels for Power Plant Applications
,” Operation Maintenance and Materials Issue,
1
(1).
4.
Sauzay
,
M.
,
Brillet
,
H.
,
Monnet
,
I.
,
Mottot
,
M.
,
Barcelo
,
F.
,
Fournier
,
B.
, and
Pineau
,
A.
,
2005
, “
Cyclically Induced Softening Due to Low-Angle Boundary Annihilation in a Martensitic Steel
,”
Mater. Sci. Eng. A
,
400–401
, pp.
241
244
.
5.
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2014
, “
A Dislocation-Based Model for High Temperature Cyclic Viscoplasticity of 9-12Cr Steels
,”
Comput. Mater. Sci.
,
92
, pp.
286
297
.
6.
Hurtado-Norena
,
C.
,
Danón
,
C. A.
,
Luppo
,
M. I.
, and
Bruzzoni
,
P.
,
2015
, “
Evolution of Minor Phases in a P91 Steel Normalized and Tempered at Different Temperatures
,”
Procedia Mater. Sci.
,
8
, pp.
1089
1098
.
7.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
,
Hyde
,
C. J.
, and
Leen
,
S. B.
,
2014
, “
High Temperature, Low Cycle Fatigue Characterization of P91 Weld and Heat Affected Zone Material
,”
ASME J. Pressure Vessel Technol.
,
136
(
2
), p.
021403
.
8.
Li
,
M.
,
Barrett
,
R. A.
,
Scully
,
S.
,
Harrison
,
N. M.
,
Leen
,
S. B.
, and
O'Donoghue
,
P. E.
,
2016
, “
Cyclic Plasticity of Welded P91 Material for Simple and Complex Power Plant Connections
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
391
404
.
9.
Divya
,
M.
,
Das
,
C. R.
,
Albert
,
S. K.
,
Goyal
,
S.
,
Ganesh
,
P.
,
Kaul
,
R.
,
Swaminathan
,
J.
,
Murty
,
B. S.
,
Kukreja
,
L. M.
, and
Bhaduri
,
A. K.
,
2014
, “
Influence of Welding Process on Type IV Cracking Behaviour of P91 Steel
,”
Mater. Sci. Eng. A
,
613
, pp.
148
158
.
10.
Abe
,
F.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
, and
Shirane
,
T.
,
2010
, “
Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
11
), pp.
598
604
.
11.
Sawada
,
K.
,
Hara
,
T.
,
Tabuchi
,
M.
,
Kimura
,
K.
, and
Kubushiro
,
K.
,
2015
, “
Microstructure Characterization of Heat Affected Zone After Welding in Mod.9Cr-1Mo Steel
,”
Mater. Charact.
,
101
, pp.
106
113
.
12.
García-Junceda
,
A.
,
Capdevila
,
C.
,
Caballero
,
F. G.
, and
García de Andrés
,
C.
,
2008
, “
Dependence of Martensite Start Temperature on Fine Austenite Grain Size
,”
Scr. Mater.
,
58
(
2
), pp.
134
137
.
13.
Abe
,
F.
,
Tabuchi
,
M.
,
Kondo
,
M.
, and
Tsukamoto
,
S.
,
2007
, “
Suppression of Type IV Fracture and Improvement of Creep Strength of 9Cr Steel Welded Joints by Boron Addition
,”
Int. J. Pressure Vessels Piping
,
84
(
1–2
), pp.
44
52
.
14.
Li
,
D.-F.
,
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
,
Hyde
,
C. J.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2016
, “
Micromechanical Finite Element Modelling of Thermo-Mechanical Fatigue for P91 Steels
,”
Int. J. Fatigue
,
87
, pp.
192
202
.
15.
Scully
,
S.
,
2018
,
Personal Correspondence
,
ESB International
, County Dublin, Ireland.
16.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
,
Williams
,
J. A.
, and
Sun
,
W.
,
2005
, “
Residual Stress Simulation in Welded Sections of P91 Pipes
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
480
487
.
17.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2013
, “
Finite Element Simulation of Residual Stresses Induced by the Dissimilar Welding of a P92 Steel Pipe With Weld Metal IN625
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
173
186
.
18.
Mac Ardghail
,
P.
,
Barrett
,
R. A.
,
Harrison
,
N.
, and
Leen
,
S. B.
,
2016
, “
Towards a Through-Process Model for Welding of 9Cr Steels
,”
Tenth International Conference on Trends in Welding Research (TWR 2016), and Ninth International Welding Symposium of Japan Welding Society (9WS)
, Tokyo, Japan, Oct. 11–14, Paper No. S32-2.
19.
Tenaris
, 2011, “
Introduction to P91/T91 Material
,”
International Workshop on Fabrication and Processing of Grade 91 Material FAB 912011
, Tiruchirappalli, India, Feb. 25–26, pp. 4–34.
20.
Vallourec & Mannesmann Tubes
, 2011, “
V & M Experience in T/P91 Tubes and Pipes
,”
International Workshop on Fabrication and Processing of Grade 91 Material FAB 912011
, Tiruchirappalli, India, Feb. 25–26, pp. 35–80.
21.
Li
,
H.
,
Lin
,
J.
,
Dean
,
T. A.
,
Wen
,
S. W.
, and
Bannister
,
A. C.
,
2009
, “
Modelling Mechanical Property Recovery of a Linepipe Steel in Annealing Process
,”
Int. J. Plasticity
,
25
(
6
), pp.
1049
1065
.
22.
Wei
,
X.
,
Asgari
,
S. A.
,
Wang
,
J. T.
,
Rolfe
,
B. F.
,
Zhu
,
H. C.
, and
Hodgson
,
P. D.
,
2015
, “
Micromechanical Modelling of Bending Under Tension Forming Behaviour of Dual Phase Steel 600
,”
Comput. Mater. Sci.
,
108
, pp.
72
79
.
23.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plasticity
,
24
(
10
), pp.
1642
1693
.
24.
Barrett
,
R. A.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2017
, “
A Physically-Based Constitutive Model for High Temperature Microstructural Degradation Under Cyclic Deformation
,”
Int. J. Fatigue
,
100
, pp.
388
406
.
25.
Lee
,
J. S.
, and
Maruyama
,
K.
,
2015
, “
Mechanism of Microstructural Deterioration Preceding Type IV Failure in Weldment of Mod.9Cr-1Mo Steel
,”
Metall. Mater. Int.
,
21
(
4
), pp.
639
645
.
26.
Hamelin
,
C. J.
,
Muransky
,
O.
,
Smith
,
M. C.
,
Holden
,
T. M.
,
Luzin
,
V.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2014
, “
Validation of a Numerical Model Used to Predict Phase Distribution and Residual Stress in Ferritic Steel Weldments
,”
Acta Mater.
,
75
, pp.
1
19
.
27.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
.
28.
Mac Ardghail
,
P.
,
Harrison
,
N.
, and
Leen
,
S. B.
,
2018
, “
A Through-Process, Thermomechanical Model for Predicting Welding-Induced Microstructure Evolution and Post-Weld High-Temperature Fatigue Response
,”
Int. J. Fatigue
,
112
, pp.
216
232
.
29.
Rajan
,
T. V.
,
Sharma
,
C. P.
, and
Sharma
,
A.
,
2013
,
Heat Treatment Principles and Techniques
, 2nd ed.,
PHI Learning Private Limited
, Delhi, India.
30.
Farragher
,
T. P.
,
Scully
,
S.
,
O'Dowd
,
N. P.
, and
Leen
,
S. B.
,
2013
, “
Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,”
Int. J. Fatigue
,
49
, pp.
50
61
.
31.
Shankar
,
V.
,
Sandhya
,
R.
, and
Mathew
,
M. D.
,
2011
, “
Creep-Fatigue-Oxidation Interaction in Grade 91 Steel Weld Joints for High Temperature Applications
,”
Mater. Sci. Eng. A
,
528
(
29–30
), pp.
8428
8437
.
You do not currently have access to this content.