Aboveground vertical steel storage tanks use stiffener rings to prevent their shell wall from buckling under wind loading. The existing stiffener rings design rules from API 650 standard is known to be overly conservative. This study investigates the possibility of modifying the design rules by reducing the required size of the top stiffener ring to the same size as the intermediate stiffener ring. In this study, we used finite element analysis (FEA) to perform linear bifurcation analysis (LBA) and geometrically nonlinear analysis including imperfections (GNIA) to obtain failure load of modeled tanks. The buckling pressure load was obtained to ensure it is larger than the design pressure. Moreover, the effects of higher strength materials, different buckling modes, and various wind profiles were also studied to ensure the design suggested by this study is practical and universal to different situations. The results show that for cylindrical storage tanks, which only needs one intermediate stiffener ring, the size of the top stiffener ring can be set to the same size as the intermediate stiffener ring.

References

1.
Godoy
,
L. A.
,
2016
, “
Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies
,”
Thin-Walled Struct.
,
103
, pp.
1
21
.
2.
Shi
,
L.
,
Shuai
,
J.
,
Wang
,
X.
, and
Xu
,
K.
,
2017
, “
Experimental and Numerical Investigation of Stress in a Large-Scale Steel Tank With a Floating Roof
,”
Thin-Walled Struct.
,
117
, pp.
25
34
.
3.
Shokrzadeh
,
A. R.
, and
Sohrabi
,
M. R.
,
2016
, “
Buckling of Ground Based Steel Tanks Subjected to Wind and Vacuum Pressures Considering Uniform Internal and External Corrosion
,”
Thin-Walled Struct.
,
108
, pp.
333
350
.
4.
Gong
,
J.-G.
,
Yu
,
L.
, and
Xuan
,
F.-Z.
,
2016
, “
Effect of Welding Residual Stress on the Buckling Behavior of Storage Tanks Subjected to Harmonic Settlement
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011401
.
5.
Haroun
,
M. A.
, and
Housner
,
G. W.
,
1981
, “
Seismic Design of Liquid Storage Tanks
,”
J. Tech. Councils ASCE
,
107
(
1
), pp.
191
207
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0010181
6.
Spritzer
,
J. M.
, and
Guzey
,
S.
,
2017
, “
Review of API 650 Annex E: Design of Large Steel Welded Aboveground Storage Tanks Excited by Seismic Loads
,”
Thin-Walled Struct.
,
112
, pp.
41
65
.
7.
Virella
,
J. C.
,
Godoy
,
L. A.
, and
Suárez
,
L. E.
,
2006
, “
Dynamic Buckling of Anchored Steel Tanks Subjected to Horizontal Earthquake Excitation
,”
J. Constr. Steel Res.
,
62
(
6
), pp.
521
531
.
8.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1996
, “
Energy Method for Base Uplifting Analysis of Liquid-Storage Tanks
,”
ASME J. Pressure Vessel Technol.
,
118
(
3
), pp.
332
335
.
9.
Zui
,
H.
,
Shinke
,
T.
, and
Nishimura
,
A.
,
1986
, “
Experimental Studies on Earthquake Response Behavior of Cylindrical Tanks
,”
ASME J. Pressure Vessel Technol.
,
109
(
1
), pp.
50
57
.
10.
Matsui
,
T.
,
Uematsu
,
Y.
,
Kondo
,
K.
,
Wakasa
,
T.
, and
Nagaya
,
T.
,
2009
, “
Wind Effects on Dynamic Response of a Floating Roof in a Cylindrical Liquid Storage Tank
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
041409
.
11.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
12.
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
,
Buckling of Thin Metal Shells
,
Spon Press
,
London
.
13.
Burgos
,
C. A.
,
Batista-Abreu
,
J. C.
,
Calabró
,
H. D.
,
Jaca
,
R. C.
, and
Godoy
,
L. A.
,
2015
, “
Buckling Estimates for Oil Storage Tanks: Effect of Simplified Modeling of the Roof and Wind Girder
,”
Thin-Walled Struct.
,
91
, pp.
29
37
.
14.
Portela
,
G.
, and
Godoy
,
L. A.
,
2005
, “
Wind Pressures and Buckling of Cylindrical Steel Tanks With a Conical Roof
,”
J. Constr. Steel Res.
,
61
(
6
), pp.
786
807
.
15.
Sabransky
,
I. J.
, and
Melbourne
,
W. H.
,
1987
, “
Design Pressure Distribution on Circular Silos With Conical Roofs
,”
J. Wind Eng. Ind. Aerodyn.
,
26
(
1
), pp.
65
84
.
16.
Portela
,
G.
, and
Godoy
,
L. A.
,
2005
, “
Shielding Effects and Buckling of Steel Tanks in Tandem Arrays Under Wind Pressure
,”
Wind Struct.
,
8
(
5
), pp.
325
342
.
17.
Portela
,
G.
, and
Godoy
,
L. A.
,
2007
, “
Wind Pressures and Buckling of Grouped Steel Tanks
,”
Wind Struct.
,
10
(
1
), pp.
23
44
.http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=KJKHCF_2007_v10n1_23
18.
MacDonald
,
P. A.
,
Holmes
,
J. D.
, and
Kwok
,
K. C. S.
,
1990
, “
Wind Loads on Circular Storage Bins, Silos and Tanks—II: Effect of Grouping
,”
J. Wind Eng. Ind. Aerodyn.
,
34
(
1
), pp.
77
95
.
19.
Kebeli
,
H. V.
, “
2002
, “
Determining Pressure Coefficients Due to Wind Loading On Grain Bins
,”
Ph.D. thesis
, University of Florida, Gainsville, FL.https://elibrary.ru/item.asp?id=5388252
20.
Rish
,
R. F.
,
1967
, “
Forces in Cylindrical Chimneys Due to Wind
,”
Proc. Inst. Civil Eng.
,
36
(
4
), pp.
791
803
.
21.
Holroyd
,
R. J.
,
1983
, “
On the Behaviour of Open-Topped Oil Storage Tanks in High Winds—Part I: Aerodynamic Aspects
,”
J. Wind Eng. Ind. Aerodyn.
,
12
(
3
), pp.
329
352
.
22.
Resinger
,
F.
, and
Greiner
,
R.
,
1982
, “Buckling of Wind Loaded Cylindrical Shells—Application to Unstiffened and Ring-Stiffened Tanks,”
Buckling of Shells
, Springer, Berlin, pp. 305–331.
23.
Uematsu
,
Y.
,
Koo
,
C.
, and
Yasunaga
,
J.
,
2014
, “
Design Wind Force Coefficients for Open-Topped Oil Storage Tanks Focusing on the Wind-Induced Buckling
,”
J. Wind Eng. Ind. Aerodyn.
,
130
, pp.
16
29
.
24.
Yasunaga
,
J.
,
Koo
,
C.
, and
Uematsu
,
Y.
,
2012
, “
Wind Loads for Designing Cylindrical Storage Tanks—Part 1: Characteristics of Wind Pressure and Force Distributions
,”
J. Wind Eng.
,
37
(
2
), pp.
43
53
.
25.
Yasunaga
,
J.
,
Koo
,
C.
, and
Uematsu
,
Y.
,
2012
, “
Wind Loads for Designing Cylindrical Storage Tanks—Part 2: Wind Force Model With Consideration of the Buckling Behavior Under Wind Loading
,”
J. Wind Eng.
,
37
(
3
), pp.
79
92
.
26.
Zhao
,
Y.
, and
Lin
,
Y.
,
2014
, “
Buckling of Cylindrical Open-Topped Steel Tanks Under Wind Load
,”
Thin-Walled Struct.
,
79
, pp.
83
94
.
27.
Windenburg
,
D. F.
, and
Trilling
,
C.
,
1934
, “
Collapse by Instability of Thin Cylindrical Shells Under External Pressure
,”
Trans. ASME
,
11
, pp.
819
825
.http://cybra.lodz.pl/Content/6287/APM_56_20.pdf
28.
Mises
,
R. V.
,
1929
, “Der kritische Aussendruck für Allseits Belastete Zylindrische Rohre,” Fest. zum 70. Geburtstag von Prof. Dr. A. Stodola, DTMB, Washington DC, Report No. 366.
29.
McGrath
,
R. V.
,
1963
, “Stability of API Standard 650 Tank Shells,” American Petroleum Institute, Vol. III, pp.
458
469
.
30.
Azzuni
,
E.
, and
Guzey
,
S.
,
2017
, “
Stability of Open Top Cylindrical Steel Storage Tanks: Design of Top Wind Girder
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031207
.
31.
API
,
2013
, “
Welded Tanks for Oil Storage
,” 12th ed.,
American Petroleum Institution
,
Washington, DC
, API Standard No. 650.
32.
AS-NZS
,
2011
, “Structural Design Actions—Part 2: Wind Actions,” Joint Technical Committee BD-006, Sydney, Australia/Wellington, New Zealand, Standard No. AS-NZS 1170.2.
33.
Meehan
,
P. M.
,
2015
, “
Design of Anchorage for Flexible Structures
,”
Procedia Eng.
,
130
, pp.
329
341
.
34.
European Committee for Standardization,
2007
, “Eurocode 3: Design of Steel Structures-Part 4-1: Silos,” European Committee for Standardization, Brussels, Belgium, Standard No.
EN 1993-4-1
.http://docserv.ercatec.net/asoka/d/enen/OGM5M2M0Njd8TVJPTi9HTExB/en.1993.4.1.2007.pdf
35.
Gorenc
,
B. E.
, and
Rotter
,
J. M.
,
1986
, “
Guidelines for the Assessment of Loads on Bulk Solids Containers
,”
Institution of Engineers, Working Party on Bins and Silos
,
Canberra, Australia
.
36.
Bu
,
F.
, and
Qian
,
C.
,
2016
, “
On the Rational Design of the Top Wind Girder of Large Storage Tanks
,”
Thin-Walled Struct.
,
99
, pp.
91
96
.
37.
Bu
,
F.
, and
Qian
,
C.
,
2015
, “
A Rational Design Approach of Intermediate Wind Girders on Large Storage Tanks
,”
Thin-Walled Struct.
,
92
, pp.
76
81
.
38.
Blackler
,
M. J.
,
1986
, “
Stability of Silos and Tanks Under Internal and External Pressure
,”
Ph.D. thesis
, University of Sydney, Camperdown, Australia.http://hdl.handle.net/2123/14480
39.
ASTM International
,
2015
, “Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service,” ASTM International, West Conshohocken, PA, Standard No.
ASTM A516/A516M-10
.https://www.astm.org/DATABASE.CART/HISTORICAL/A516A516M-10R15.htm
40.
ASTM International
,
2013
,
“Standard Specification for Steel Plates for Pressure Vessels, Produced by Thermo-Mechanical Control Process TMCP
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM A841/A841M-13
.https://www.astm.org/DATABASE.CART/HISTORICAL/A841A841M-13.htm
41.
Godoy
,
L. A.
, and
Flores
,
F. G.
,
2002
, “
Imperfection Sensitivity to Elastic Buckling of Wind Loaded Open Cylindrical Tanks
,”
Struct. Eng. Mech.
,
13
(
5
), pp.
533
542
.
42.
ABAQUS
,
2014
,
ABAQUS Analysis User's Manual Version 6.14
,
Dassault Systèmes Simulia
,
Providence, RI
.
43.
Babcock
,
C. D.
,
1983
, “
Shell Stability
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
935
940
.
44.
ASCE
,
2005
, “Minimum Design Loads for Buildings and Other Structures,” American Society of Civil Engineers, Reston, VA, Standard No.
ASCE/SEI 7-05
.https://ascelibrary.org/doi/book/10.1061/9780784408094
45.
Pircher
,
M.
,
Guggenberger
,
W.
,
Greiner
,
R.
, and
Bridge
,
R.
,
1998
, “
Stresses in Elastic Cylindrical Shells Under Wind Load
,”
Thin-Walled Structures: Research and Development
, Elsevier, Amsterdam, The Netherlands, pp.
663
669
.
46.
Briassoulis
,
D.
, and
Pecknold
,
D. A.
,
1986
, “
Behaviour of Empty Steel Grain Silos Under Wind Loading—Part 1: The Stiffened Cylindrical Shell
,”
Eng. Struct.
,
8
(
4
), pp.
260
275
.
47.
Greiner
,
R.
,
1998
,
Cylindrical Shells: Wind Loading
,
EFN SPON
,
London
.
48.
Maraveas
,
C.
,
Balokas
,
G. A.
, and
Tsavdaridis
,
K. D.
,
2015
, “
Numerical Evaluation on Shell Buckling of Empty Thin-Walled Steel Tanks Under Wind Load According to Current American and European Design Codes
,”
Thin-Walled Struct.
,
95
, pp.
152
160
.
49.
Teng
,
J. G.
, and
Song
,
C. Y.
,
2001
, “
Numerical Models for Nonlinear Analysis of Elastic Shells With Eigenmode-Affine Imperfections
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3263
3280
.
50.
Riks
,
E.
,
1978
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
51.
Rondon
,
A.
, and
Guzey
,
S.
,
2017
, “
Determination of Failure Pressure Modes of the API Specification 12F Shop-Welded, Flat-Bottom Tanks
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041409
.
52.
API
,
2007
, “Fitness for Service,” 2nd ed.,
American Petroleum Institute
,
Washington, DC
, Standard No.
API 579-1/ASME FFS-1
.http://www.asme.org/products/courses/api-5791asme-ffs1-fitness-service-evaluation
53.
Greiner
,
R.
, and
Derler
,
P.
,
1995
, “
Effect of Imperfections on Wind-Loaded Cylindrical Shells
,”
Thin-Walled Struct.
,
23
(
1–4
), pp.
271
281
.
You do not currently have access to this content.