The DOE/OCDO sponsored Ultrasupercritical Steam Boiler Consortium is conducting thermal shock tests on austenitic and nickel-based materials to assess their use in thick-section boiler components. This paper describes the tests on CCA617 (a controlled chemistry version of IN617) and Super 304H thick-walled tubes. Details are given of the metallurgical analyses of the observed cracking in the bore and on the outside diameter of the samples, and of the thermal-mechanical analyses to explain the results. Elastic-plastic and elastic-plastic-creep analyses are used to calculate damage based on rupture life and creep strain accumulation. The results of the metallurgical and mechanical analyses are compared, and conclusions are drawn as to the accuracy and effectiveness of available high temperature life prediction techniques. The test conditions bear no relation to expected operating conditions. They are chosen to generate failure data.

1.
Viswanathan
,
R.
,
Henry
,
J. F.
,
Tanzosh
,
J.
,
Stanko
,
G.
,
Shingledecker
,
J.
,
Vitalis
,
B.
, and
Purgert
,
R.
, 2005, “
U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants
,”
J. Mater. Eng. Perform.
1059-9495,
14
(
3
), pp.
281
292
.
2.
Clement
,
G.
,
Lebey
,
J.
, and
Roche
,
R. L.
, 1986, “
A Design Rule for Thermal Ratchetting
,”
ASME J. Pressure Vessel Technol.
0094-9930,
108
, pp.
188
196
.
3.
Karadeniz
,
S.
, and
Ponter
,
A. R. S.
, 1987, “
The Plastic Ratcheting of Thin Cyclindrical Shells Subjected to Axisymmetric Thermal and Mechanical Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
109
, pp.
387
393
.
4.
Corum
,
J. M.
, and
Sartory
,
W. K.
, 1987, “
Assessment of Current High Temperature Design Methodology Based on Structural Failure Tests
,”
ASME J. Pressure Vessel Technol.
0094-9930,
109
, pp.
387
393
.
5.
Shingledecker
,
J. P.
,
Swindeman
,
R. W.
,
Wu
,
Q.
, and
Vasudevan
,
V. K.
, 2005, “
Creep Strength of High-Temperature Alloys for Ultrasupercritical Steam Boilers
,”
Proceedings of the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants
, Hilton Head, SC, Oct. 25–28, 2004,
ASM-International
,
Materials Park, OH
, pp.
1198
1212
.
6.
Sawaragi
,
Y.
, and
Hirano
,
S.
, 1992, “
The Development of a New 18-8 Austenitic Steel (0.1C-18Cr-9Ni-3Cu-Nb, N) With High Elevated Temperature Strength for Fossil Fired Boilers
,”
Mechanical Behaviour of Materials—VI
, Kyoto, Japan, Jul. 29–Aug. 2, 1991,
Pergamon Press
,
New York
, Vol.
4
, pp.
589
594
.
7.
Corum
,
J. M.
,
Gwaltney
,
R. C.
, and
Sartory
,
W. K.
, 1986, “
Assessment of Adequacy of High-Temperature Design Methodology Based on U.S. and U.K. Thermal Shock Tests
,” Report No. ORNL-6235.
8.
1995, ASME Boiler and Pressure Vessel Code Section II, Part D, American Society of Mechanical Engineers.
9.
2003, Special Metals Publication No. SMC-029, Oct. 3.
10.
Schubert
,
F.
,
Bruch
,
U.
,
Cook
,
R.
,
Diehl
,
H.
,
Ennis
,
P.
,
Jakobeit
,
W.
,
Penkalla
,
H. J.
,
Te Hessen
,
E.
, and
Uhlrich
,
G.
, 1984, “
Creep Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications
,”
Nucl. Technol.
0029-5450,
66
, pp.
227
240
.
11.
1986, NRIM Creep Data Sheet No. 4B, 18Cr-8Ni SS Boiler and HX Seamless Tubes SUS 304H TB.
12.
ORNL unpublished data.
13.
Krupp VDM Data Sheet for CCA617.
14.
2007, Abaqus Users’ Manual Vol. III, Version 6.7, Dassault Systemes, Providence, USA.
15.
S.
Yukawa
, 1991, “
Elevated Temperature Fatigue Design Curves for Ni-Cr-Co-Mo Alloy 617
,”
First Joint JSME/ASME International Conference on Nuclear Engineering
, Tokyo, Japan, November.
16.
2003,
ASM Handbook
, Vol.
19
,
American Society for Metals
,
Metals Park, OH
.
You do not currently have access to this content.