This paper casts pipe inspection by ultrasonic guided waves in a feature extraction and automatic classification framework. The specific defect under investigation is a small notch cut in an ASTM-A53-F steel pipe at depths ranging from 1% to 17% of the pipe cross-sectional area. A semi-analytical finite element method is first used to model wave propagation in the pipe. In the experiment, reflection measurements are taken and six features are extracted from the discrete wavelet decomposition of the raw signals and from the Hilbert and Fourier transforms of the reconstructed signals. A six-dimensional damage index is then constructed, and it is fed to an artificial neural network that classifies the size and the location of the notch. Overall, the wavelet-based multifeature analysis demonstrates good classification performance and robustness against noise and changes in some of the operating parameters.

1.
DOT Office of Pipeline Safety, Pipeline Statistics,
Liquid Accidents Yearly Summary for 1986–2003
, http://ops.dot.gov/stats/lq_sum.htmhttp://ops.dot.gov/stats/lq_sum.htm
2.
DOT Office of Pipeline Safety, Pipeline Statistics,
Natural Gas Accidents for Transmission Operators Yearly Summary for 1986–2003
, http://ops.dot.gov/stats/tran_sum.htmhttp://ops.dot.gov/stats/tran_sum.htm
3.
Ditri
,
J. J.
, 1994, “
Utilization of Guided Elastic Waves for the Characterization of Circumferential Cracks in Hollow Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
96
, pp.
3769
3775
.
4.
Rose
,
J. L.
,
Ditri
,
J. J.
,
Pilarski
,
A.
,
Rajana
,
K.
, and
Carr
,
F. T.
, 1994, “
A Guided Wave Inspection Technique for Nuclear Steam Generator Tubing
,”
NDT & E Int.
0963-8695,
27
, pp.
307
330
.
5.
Rose
,
J. L.
,
Jiao
,
D.
, and
Spanner
,
J.
, Jr.
, 1996, “
Ultrasonic Guided Wave NDE for Piping
,”
Mater. Eval.
0025-5327,
54
, pp.
1310
1313
.
6.
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1997, “
Long Range Propagation of Lamb Waves in Chemical Plant Pipework
,”
Mater. Eval.
0025-5327,
55
, pp.
504
508
.
7.
Alleyne
,
D.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
, 1998, “
The Reflection of Guided Waves From Circumferential Notches in Pipes
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
635
641
.
8.
Lowe
,
M. J. S.
, 1998, “
Characteristics of the Reflection of Lamb Waves from Defects in Plates and Pipes
,” in
Rev. Progr. Quant. Nondestruct. Eval.
,
17
,
D.
Thompson
, and
D.
Chimenti
, eds.,
Plenum
, New York, pp.
113
120
.
9.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
0041-624X,
36
, pp.
147
154
.
10.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1998, “
The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
649
656
.
11.
Shin
,
H.
, and
Rose
,
J. L.
, 1998, “
Guided Wave Tuning Principles for Defect Detection in Tubing
,”
J. Nondestruct. Eval.
0195-9298,
17
, pp.
27
36
.
12.
Guo
,
D.
, and
Kundu
,
T.
, 2001, “
A New Transducer Holder Mechanism for Pipe Inspection
,”
J. Acoust. Soc. Am.
0001-4966,
110
, pp.
303
309
.
13.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M. J. S.
, and
Roosenbrand
,
A. G.
, 2003, “
The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes
,”
J. Acoust. Soc. Am.
0001-4966,
114
, pp.
611
625
.
14.
Long
,
R.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
, 2003, “
Attenuation Characteristics of the Fundamental Modes that Propagate in Buried Iron Water Pipes
,”
Ultrasonics
0041-624X,
41
, pp.
509
519
.
15.
Kwun
,
H.
,
Kim
,
S. Y.
,
Choi
,
M. S.
, and
Walker
,
S. M.
, 2004, “
Torsional Guided-Wave Attenuation in Coal-Tar-Enamel-Coated, Buried Piping
,”
NDT & E Int.
0963-8695,
37
, pp.
663
665
.
16.
Gazis
,
D. C.
, 1959, “
Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders I. Analytical Foundation
,”
J. Acoust. Soc. Am.
0001-4966,
31
, pp.
568
573
.
17.
Rose
,
J. L.
, 1999,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
, Cambridge, UK.
18.
Pavlakovic
,
B.
,
Lowe
,
M. J. S.
,
Alleyne
,
D.
, and
Cawley
,
P.
, 1997, “
DISPERSE: A General Purpose Program for Creating Dispersion Curves
,” in
Rev. Progr. Quant. Nondestruct. Eval.
,
16
,
D.
Thompson
and
D.
Chimenti
, eds.,
Plenum
, New York, pp.
185
192
.
19.
Aalami
,
B.
, 1973, “
Waves in Prismatic Guides of Arbitrary Cross Section
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
1067
1072
.
20.
Hayashi
,
T.
,
Song
,
W.-J.
, and
Rose
,
J. L.
, 2003, “
Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross Section, a Rod and Rail Example
,”
Ultrasonics
0041-624X,
41
, pp.
175
183
.
21.
Gavrić
,
L.
, 1995, “
Computation of Propagating Waves In Free Rail Using A Finite Element Technique
,”
J. Sound Vib.
0022-460X,
185
, pp.
531
543
.
22.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
,
Pavlakovic
,
B.
, and
Wilcox
,
P.
, 2003, “
Practical Long Range Guided Wave Testing: Applications to Pipes and Rails
,”
Mater. Eval.
0025-5327,
61
, pp.
66
74
.
23.
Kwun
,
H.
, and
Bartels
,
K. A.
, 1999, Method For Improving Defect Detectability With Magnetostrictive Sensors for Piping Inspection, U.S. Patent 6,205,859.
24.
Kwun
,
H.
,
Kim
,
S.-Y.
, and
Crouch
,
A. E.
, 2003, Method and Apparatus Generating and Detecting Torsional Waves for Long Range Inspection of Pipes and Tubes, U.S. Patent 6,624,628.
25.
Na
,
W.-B.
, and
Kundu
,
T.
, 2002, “
EMAT-Based Inspection of Concrete-Filled Steel Pipes for Internal Voids and Inclusions
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
265
272
.
26.
Siqueira
,
M. H. S.
,
Gatts
,
C. E. N.
,
da Silva
,
R. R.
, and
Rebello
,
J. M. A.
, 2004, “
The Use of Ultrasonic Guided Waves and Wavelet Analysis in Pipe Inspection
,”
Ultrasonics
0041-624X,
41
, pp.
785
797
.
27.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hunter
,
N. F.
, and
Worden
,
K.
, 2001, “
Structural Health Monitoring Using Statistical Pattern Recognition Techniques
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
706
711
.
28.
Staszewski
,
W.
,
Boller
,
C.
, and
Tomlinson
,
G.
, 2004,
Health Monitoring of Aerospace Structures
,
John Wiley & Sons
, Chichester, UK.
29.
Yang
,
B.-S.
,
Hwang
,
W.-W.
,
Kim
,
D.-J.
, and
Tan
,
A. C.
, 2005, “
Condition Classification of Small Reciprocating Compressor for Refrigerators Using Artificial Neural Networks and Support Vector Machines
,”
Mech. Syst. Signal Process.
0888-3270,
19
, pp.
371
390
.
30.
Mallat
,
S. G.
, 1999,
A Wavelet Tour of Signal Processing
,
Academic Press
, San Diego.
31.
Kim
,
H.
, and
Melhem
,
H.
, 2004, “
Damage Detection of Structures by Wavelet Analysis
,”
Eng. Struct.
0141-0296,
26
, pp.
347
362
.
32.
Abbate
,
A.
,
Koay
,
J.
,
Frankel
,
J.
,
Schroeder
,
S. C.
, and
Das
,
P.
, 1997, “
Signal Detection and Noise Suppression Using a Wavelet Transform Signal Processor: Application to Ultrasonic Flaw Detection
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
44
, pp.
14
26
.
33.
Staszewski
,
W.
, 1998, “
Wavelet Based Compression and Feature Selection for Vibration Analysis
,”
J. Sound Vib.
0022-460X,
211
, pp.
735
760
.
34.
Staszewski
,
W.
, 2002, “
Intelligent Signal Processing for Damage Datection in Composite Materials
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
941
950
.
35.
McNamara
,
J.
, and
Lanza di Scalea
,
F.
, 2004, “
Improvements in Non-Contact Ultrasonic Testing of Rails by The Discrete Wavelet Transform
,”
Mater. Eval.
0025-5327,
62
, pp.
365
372
.
36.
Staszewski
,
W.
,
Pierce
,
G.
,
Worden
,
K.
,
Philp
,
W.
,
Tomlinson
,
G.
, and
Culshaw
,
B.
, 1997, “
Wavelet Signal Processing for Enhanced Lamb-wave Defect Detection in Composite Plates Using Optical Fiber Detection
,”
Opt. Eng.
0091-3286,
36
, pp.
1877
1888
.
37.
Paget
,
C. A.
,
Grondel
,
S.
,
Levin
,
K.
, and
Delebarre
,
C.
, 2003, “
Damage Assessment in Composites by Lamb Waves and Wavelet Coefficients
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
393
402
.
38.
Yam
,
L. H.
,
Yan
,
Y. J.
,
Cheng
,
L.
, and
Jiang
,
J. S.
, 2003, “
Identification of Complex Crack Damage for Honeycomb Sandwich Plate Using Wavelet Analysis and Neural Networks
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
661
671
.
39.
Zang
,
C.
, and
Imregun
,
M.
, 2001, “
Structural Damage Detection Using Artificial Neural Networks and Measured FRF Data Reduced via Principal Component Projection
,”
J. Sound Vib.
0022-460X,
242
, pp.
813
827
.
40.
Godin
,
N.
,
Huguet
,
S.
,
Gaertner
,
R.
, and
Salmon
,
L.
, 2004, “
Clustering of Acoustic Emission Signals During Tensile Tests on Unidirectional Glass/Polyester Composite Using Supervised and Unsupervised Classifiers
,”
NDT & E Int.
0963-8695,
37
, pp.
253
264
.
41.
Kim
,
K.-B.
,
Yoon
,
D.-J.
,
Jeong
,
J.-C.
, and
Lee
,
S.-S.
, 2004, “
Determining the Stress Intensity Factor of a Material With an Artificial Neural Network from Acoustic Emission Measurements
,”
NDT & E Int.
0963-8695,
37
, pp.
423
429
.
42.
McNamara
,
J.
,
Lanza di Scalea
,
F.
, and
Fateh
,
M.
, 2004, “
Automatic Defect Classification in Long-Range Ultrasonic Rail Inspection Using a Support Vector Machine-Based Smart System
,”
Insight
1060-135X,
46
, pp.
331
337
.
43.
Zhuang
,
W.
,
Shah
,
A.
, and
Datta
,
S.
, 1997, “
Axisymmetric Guided Wave Scattering by Cracks in Welded Steel Pipes
,”
ASME J. Pressure Vessel Technol.
0094-9930,
119
, pp.
401
406
.
44.
Bernard
,
A.
,
Lowe
,
M. J. S.
, and
Deschamps
,
M.
, 2001, “
Guided Waves Energy Velocity in Absorbing and Non-Absorbing Plates
,”
J. Acoust. Soc. Am.
0001-4966,
110
, pp.
186
196
.
45.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Co.
, Amsterdam.
You do not currently have access to this content.