Abstract

Offshore renewable energy, derived from wind and waves, is increasingly being considered in many world regions. Co-location of offshore wind turbine and wave energy converter arrays allows the shared use of space and offers beneficial interaction, leading to efficient utilization of marine resources and more sustainable ocean energy solutions. By extracting energy from waves, wave energy converters can reduce hydrodynamic loads on downstream floating offshore wind turbines through sheltering effects, enhancing the structural reliability of the floating offshore wind turbine and extending its service life. To quantify such extension in service life, a comprehensive reliability analysis framework is proposed that incorporates metocean data analysis, fatigue damage assessment, and an integrated reliability-based fatigue life estimation. We employ power take-off matrices of alternative wave energy devices to approximate absorbed wave power in encountered sea states. A metocean data analysis establishes representative sea states for the incident waves and lee waves estimated by subtracting absorbed wave power from the incident power. The open-source time-domain simulation tool, openfast, is employed to compute loads on a downstream floating offshore wind turbine, for sea states of interest. Using selected output stress response time series, fatigue damage is assessed; an extended service life due to effective sheltering for the floating offshore wind turbine is evaluated through the proposed fatigue reliability analysis. Considering three alternatives, our analysis indicates that a 14–25% extension in service life can be achieved using wave energy devices that offer the benefits of sheltering.

References

1.
European Commission
,
2023
, “Renewable Energy Targets,” https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en, Accessed December 24, 2023.
2.
Gunn
,
K.
, and
Stock-Williams
,
C.
,
2012
, “
Quantifying the Global Wave Power Resource
,”
Renew. Energy
,
44
, pp.
296
304
.
3.
Leybourne
,
M.
,
2021
, “Powering the World With Offshore Wind – the Potential for Emerging Markets,” https://www.linkedin.com/pulse/powering-world-offshore-wind-potential-emerging-mark-leybourne/, Accessed January 23, 2024.
4.
Astariz
,
S.
, and
Iglesias
,
G.
,
2015
, “
Enhancing Wave Energy Competitiveness Through Co-located Wind and Wave Energy Farms. A Review on the Shadow Effect
,”
Energies
,
8
(
7
), pp.
7344
7366
.
5.
Guo
,
C.
,
Sheng
,
W.
,
De Silva
,
D. G.
, and
Aggidis
,
G.
,
2023
, “
A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model
,”
Energies
,
16
(
5
), p.
2144
.
6.
Shen
,
W.
,
Chen
,
X.
,
Qiu
,
J.
,
Hayward
,
J. A.
,
Sayeef
,
S.
,
Osman
,
P.
,
Meng
,
K.
, and
Dong
,
Z. Y.
,
2020
, “
A Comprehensive Review of Variable Renewable Energy Levelized Cost of Electricity
,”
Renew. Sustain. Energy Rev.
,
133
, p.
110301
.
7.
Chang
,
G.
,
Jones
,
C. A.
,
Roberts
,
J. D.
, and
Neary
,
V. S.
,
2018
, “
A Comprehensive Evaluation of Factors Affecting the Levelized Cost of Wave Energy Conversion Projects
,”
Renew. Energy
,
127
, pp.
344
354
.
8.
Pérez-Collazo
,
C.
,
Jakobsen
,
M. M.
,
Buckland
,
H.
, and
Fernández-Chozas
,
J.
,
2013
, “
Synergies for a Wave-Wind Energy Concept
,”
European Offshore Wind Energy Conference
,
Messe Frankfurt, Germany
,
Nov. 19–21
.
9.
Heo
,
T.
,
Liu
,
D. P.
, and
Manuel
,
L.
,
2023
, “
Weather Window Analysis in Operations and Maintenance Policies for Offshore Floating Multi-Purpose Platforms
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
4
), p.
041701
.
10.
Clark
,
C. E.
,
Velarde
,
J.
, and
Sønderkær Nielsen
,
J.
,
2018
, “
Fatigue Load Reductions in Offshore Wind Turbine Monopile Foundations in Co-located Wind-Wave Arrays
,”
International Conference on Ocean, Offshore & Arctic Engineering
,
Madrid, Spain
,
June 17–22
.
11.
Clark
,
C. E.
, and
Paredes
,
G. M.
,
2018
, “
Effects of Co-located Floating Wind-Wave Systems on Fatigue Damage of Floating Offshore Wind Turbine Mooring Cables
,”
International Conference on Ocean, Offshore & Arctic Engineering
,
Madrid, Spain
,
June 17–22
.
12.
Wang
,
M.
,
Wang
,
C.
,
Hnydiuk-Stefan
,
A.
,
Feng
,
S.
,
Atilla
,
I.
, and
Li
,
Z.
,
2021
, “
Recent Progress on Reliability Analysis of Offshore Wind Turbine Support Structures Considering Digital Twin Solutions
,”
Ocean. Eng.
,
232
, p.
109168
.
13.
Wilkie
,
D.
, and
Galasso
,
C.
,
2020
, “
Impact of Climate-Change Scenarios on Offshore Wind Turbine Structural Performance
,”
Renew. Sustain. Energy Rev.
,
134
, p.
110323
.
14.
Heo
,
T.
,
Liu
,
D. P.
,
Manuel
,
L.
,
Correia
,
J. A.
, and
Mendes
,
P.
,
2022
, “
Sustainable Reuse of Decommissioned Jacket Platforms for Offshore Wind Energy Accounting for Accumulated Fatigue Damage
,”
International Conference on Ocean, Offshore & Arctic Engineering
,
Hamburg, Germany
,
June 5–10
.
15.
Heo
,
T.
,
Liu
,
D. P.
,
Manuel
,
L.
,
Correia
,
J. A.
, and
Mendes
,
P.
,
2023
, “
Assessing Fatigue Damage in the Reuse of a Decommissioned Offshore Jacket Platform to Support a Wind Turbine
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
4
), p.
042002
.
16.
Pakenham
,
B.
,
Ermakova
,
A.
, and
Mehmanparast
,
A.
,
2021
, “
A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments
,”
Energies
,
14
(
7
), p.
1936
.
17.
Booij
,
N.
,
Holthuijsen
,
L.
, and
Ris
,
R.
,
1996
, “
The “SWAN” Wave Model for Shallow Water
,”
Coastal Engineering 1996
,
Orlando, FL
,
Sept. 2–6
.
18.
McNatt
,
J. C.
,
Porter
,
A.
, and
Ruehl
,
K.
,
2020
, “
Comparison of Numerical Methods for Modeling the Wave Field Effects Generated by Individual Wave Energy Converters and Multiple Converter Wave Farms
,”
J. Mar. Sci. Eng.
,
8
(
3
), p.
168
.
19.
Luczko
,
E.
,
Robertson
,
B.
,
Bailey
,
H.
,
Hiles
,
C.
, and
Buckham
,
B.
,
2018
, “
Representing Non-Linear Wave Energy Converters in Coastal Wave Models
,”
Renew. Energy
,
118
, pp.
376
385
.
20.
Flanagan
,
T.
,
Wengrove
,
M.
, and
Robertson
,
B.
,
2022
, “
Coupled Wave Energy Converter and Nearshore Wave Propagation Models for Coastal Impact Assessments
,”
J. Mar. Sci. Eng.
,
10
(
3
), p.
370
.
21.
Ruehl
,
K. M.
,
Roberts
,
J. D.
,
Posner
,
A.
, and
Porter
,
A.
,
2013
, “Development of SNL-SWAN a Validated Wave Energy Converter Array Modeling Tool,”
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
, Technical Report.
22.
Guillou
,
N.
,
2020
, “
Estimating Wave Energy Flux From Significant Wave Height and Peak Period
,”
Renew. Energy
,
155
, pp.
1383
1393
.
23.
McNatt
,
J. C.
,
Porter
,
A.
,
Chartrand
,
C.
, and
Roberts
,
J.
,
2020
, “
The Performance of a Spectral Wave Model at Predicting Wave Farm Impacts
,”
Energies
,
13
(
21
), p.
5728
.
24.
Jonkman
,
J.
,
2022
, “OpenFAST Documentation,”
National Renewable Energy Laboratory
, Technical Report.
25.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Technical Report.
26.
Robertson
,
A.
,
Jonkman
,
J.
,
Masciola
,
M.
,
Song
,
H.
,
Goupee
,
A.
,
Coulling
,
A.
, and
Luan
,
C.
,
2014
, “Definition of the Semisubmersible Floating System for Phase II of OC4,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Technical Report.
27.
Rychlik
,
I.
,
1987
, “
A New Definition of the Rainflow Cycle Counting Method
,”
Int. J. Fatigue
,
9
(
2
), pp.
119
121
.
28.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
, pp.
A159
A164
.
29.
Veers
,
P. S.
,
Winterstein
,
S. R.
,
Lange
,
C. H.
, and
Wilson
,
T. A.
,
1994
, “Users Manual for FAROW: Fatigue and Reliability of Wind Turbine Components: Version 1.1,” Technical Report,
Sandia National Labs
,
Albuquerque, NM
.
30.
Veigas
,
M.
, and
Iglesias
,
G.
,
2014
, “
Potentials of a Hybrid Offshore Farm for the Island of Fuerteventura
,”
Energy Convers. Manage.
,
86
, pp.
300
308
.
31.
Guillou
,
N.
, and
Chapalain
,
G.
,
2018
, “
Annual and Seasonal Variabilities in the Performances of Wave Energy Converters
,”
Energy
,
165
, pp.
812
823
.
32.
Silva
,
D.
,
Rusu
,
E.
, and
Soares
,
C. G.
,
2013
, “
Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore
,”
Energies
,
6
(
3
), pp.
1344
1364
.
33.
Re
,
C. L.
,
Manno
,
G.
,
Basile
,
M.
, and
Ciraolo
,
G.
,
2022
, “
The Opportunity of Using Wave Energy Converters in a Mediterranean Hot Spot
,”
Renew. Energy
,
196
, pp.
1095
1114
.
34.
Christensen
,
L.
,
Friis-Madsen
,
E.
, and
Kofoed
,
J. P.
,
2005
, “
The Wave Energy Challenge: The Wave Dragon Case
,”
POWER-GEN EUROPE
,
Milan, Italy
,
June 28–30
.
35.
Carballo
,
R.
,
Sánchez
,
M.
,
Ramos
,
V.
,
Taveira-Pinto
,
F.
, and
Iglesias
,
G.
,
2014
, “
A High Resolution Geospatial Database for Wave Energy Exploitation
,”
Energy
,
68
, pp.
572
583
.
36.
Liu
,
J.
,
Thomas
,
E.
,
Goyal
,
A.
, and
Manuel
,
L.
,
2019
, “
Design Loads for a Large Wind Turbine Supported by a Semi-Submersible Floating Platform
,”
Renew. Energy
,
138
, pp.
923
936
.
37.
Liu
,
D. P.
,
Ferri
,
G.
,
Heo
,
T.
,
Marino
,
E.
, and
Manuel
,
L.
,
2024
, “
On Long-Term Fatigue Damage Estimation for a Floating Offshore Wind Turbine Using a Surrogate Model
,”
Renew. Energy
,
225
, p.
120238
.
38.
Lim
,
H.
,
Manuel
,
L.
, and
Min Low
,
Y.
,
2021
, “
On Efficient Surrogate Model Development for the Prediction of the Long-Term Extreme Response of a Moored Floating Structure
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), p.
011703
.
39.
Nguyen
,
P. T. T.
,
Manuel
,
L.
, and
Coe
,
R. G.
,
2019
, “
On the Development of an Efficient Surrogate Model for Predicting Long-Term Extreme Loads on a Wave Energy Converter
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
6
), p.
061103
.
40.
Scott
,
D. W.
,
2015
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
John Wiley & Sons
,
Hoboken, NJ
.
41.
Yang
,
Z.
,
Zhang
,
L.
,
Shi
,
W.
,
Niu
,
X.
,
Michailides
,
C.
, and
Li
,
X.
,
2024
, “
Dynamic Performance of a Semisubmersible Floating Wind-Wave Integrated System
,”
Ships Offshore Struct.
,
19
(
7
), pp.
841
854
.
42.
Zhao
,
Z.
,
Wang
,
W.
,
Shi
,
W.
,
Li
,
X.
, and
Wang
,
B.
,
2022
, “
Dynamic Response Analysis of a Novel Semi-Submersible Floating Offshore Wind Turbine Based on Different Mooring System Designs
,”
International Conference on Ocean, Offshore & Arctic Engineering
,
Hamburg, Germany
,
June 5–10
.
43.
Veritas
,
D. N.
,
2016
,
DNV-RP-C203 Fatigue Design of Offshore Steel Structures
,
DNV GL
.
44.
Balli
,
E.
, and
Zheng
,
Y.
,
2022
, “
Pseudo-Coupled Approach to Fatigue Assessment for Semi-Submersible Type Floating Offshore Wind Turbines
,”
Ocean Eng.
,
261
, p.
112119
.
45.
Ruehl
,
K. M.
,
Roberts
,
J. D.
,
Porter
,
A.
,
Chang
,
G.
,
Chartrand
,
C. C.
, and
Smtih
,
H.
,
2015
, “Development Verification and Application of the SNL-SWAN Open Source Wave Farm Code,”
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
, Technical Report.
46.
Bachynski
,
E. E.
,
Kvittem
,
M. I.
,
Luan
,
C.
, and
Moan
,
T.
,
2014
, “
Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
4
), p.
041902
.
47.
Özkan-Haller
,
H. T.
,
Haller
,
M. C.
,
McNatt
,
J. C.
,
Porter
,
A.
, and
Lenee-Bluhm
,
P.
,
2017
, “
Analyses of Wave Scattering and Absorption Produced by WEC Arrays: Physical/Numerical Experiments and Model Assessment
,”
Mar. Renew. Energy
, pp.
71
97
.
48.
Devolder
,
B.
,
Stratigaki
,
V.
,
Troch
,
P.
, and
Rauwoens
,
P.
,
2018
, “
CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves
,”
Energies
,
11
(
3
), p.
641
.
49.
Stratigaki
,
V.
,
Troch
,
P.
, and
Forehand
,
D.
,
2019
, “
A Fundamental Coupling Methodology for Modeling Near-Field and Far-Field Wave Effects of Floating Structures and Wave Energy Devices
,”
Renew. Energy
,
143
, pp.
1608
1627
.
50.
Khan
,
R. A.
, and
Ahmad
,
S.
,
2014
, “
Bi-Linear Fatigue and Fracture Approach for Safety Analysis of an Offshore Structure
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
021602
.
51.
Rönkkö
,
J.
,
Khosravi
,
A.
, and
Syri
,
S.
,
2023
, “
Techno-Economic Assessment of a Hybrid Offshore Wind–Wave Farm: Case Study in Norway
,”
Energies
,
16
(
11
), p.
4316
.
You do not currently have access to this content.