Abstract

The current work uses computational simulations to study the effect of the Reynolds number on phase-averaged velocity profiles and turbulence characteristics for environments with wave–current flow. The presented computational model utilized a Reynolds-averaged Navier–Stokes (RANS) solver, which is closed using K–ω shear stress transport (SST) equations. The volume of fluid (VOF) method is employed to capture and analyze the wave profiles and the related water surface dynamics. A new user-defined function is created to simulate the waves, which are then imposed on a steady current introduced at the inlet. The model is validated against established experimental data, which shows strong agreement. The research examines the impact of varying wave frequencies on changing background channel flow Reynolds number on the phase-averaged flow characteristics. Inferences regarding the near-surface and near-bed turbulence characteristics are drawn from the background current interaction with the surface wave. Streamwise velocity profiles agree with the existing literature on wave current interaction for lower-frequency waves, but when the frequency is increased, the results deviate. The turbulence kinetic energy resulting from combined wave–current motion is found to be more for waves superposed on a background current with a low velocity than waves superposed on high-velocity background flow. It was also found that the analytical model put forward by Grant–Madsen needs adjustment to be applicable to waves across all frequency ranges. The streamwise velocity profiles also deviate from the established literature for waves with higher frequencies.

References

1.
Zhang
,
X.
,
Simons
,
R.
,
Zheng
,
J.
, and
Zhang
,
C.
,
2022
, “
A Review of the State of Research on Wave-Current Interaction in Nearshore Areas
,”
Ocean Eng.
,
243
, p.
110202
.
2.
Grant
,
W. D.
, and
Madsen
,
O. S.
,
1979
, “
Combined Wave and Stream Interaction With a Rough Seabed
,”
J. Geophys. Res. Oceans
,
84
(
C4
), pp.
1797
1808
.
3.
Myrhaug
,
D.
,
1982
, “
On a Theoretical Model of Rough Turbulent Wave Boundary Layer
,”
Ocean Eng.
,
9
(
6
), pp.
547
565
.
4.
Sleath
,
J. F. A.
,
1991
, “
Velocities and Shear Stresses in Wave-Current Flows
,”
J. Geophys. Res. Oceans
,
96
(
C8
), pp.
15237
15244
.
5.
Malarkey
,
J.
, and
Davies
,
A. G.
,
1998
, “
Modelling Wave-Current Interactions in Rough Turbulent Bottom Boundary Layers
,”
Ocean Eng.
,
25
(
2–3
), pp.
119
141
.
6.
Yang
,
S. Q.
,
Tan
,
S. K.
,
Lim
,
S. Y.
, and
Zhang
,
S. F.
,
2006
, “
Velocity Distribution in Combined Wave-Current Flows
,”
Adv. Water Res.
,
29
(
8
), pp.
1196
1208
.
7.
Tambroni
,
N.
,
Blondeaux
,
P.
, and
Vittori
,
G.
,
2015
, “
A Simple Model of Wave-Current Interaction
,”
J. Fluid Mech.
,
775
, pp.
328
348
.
8.
Jonsson
,
I. G.
, and
Carlsen
,
N. A.
,
1976
, “
Experimental and Theoretical Investigations in an Oscillatory Turbulent Boundary Layer
,”
J. Hydraul. Res.
,
14
(
1
), pp.
45
60
.
9.
Neves
,
C. F.
,
Endres
,
L. A. M.
,
Fortes
,
C. J.
, and
Clemente
,
D. S.
,
2012
, “
The Use of Adv in Wave Flumes: Getting More Information About Waves
,”
Coast. Eng. Proc.
, (
33
), p.
38
.
10.
Smith
,
L.
,
Hu
,
B.
,
Kolsaas
,
J.
,
Jensen
,
A.
,
Sveen
,
K.
, and
Sveen
,
A. J. K.
,
2016
, “
X-Ray PTV Measurements of Solitary Waves
,”
18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 4–7
.
11.
Liu
,
A.
,
Shen
,
X.
,
Smith
,
G. H.
, and
Grant
,
I.
,
1992
, “
Particle Image Velocimetry Measurements of Wave-Current Interaction in a Laboratory Flume
,”
Opt. Lasers Eng.
,
16
(
4–5
), pp.
239
264
.
12.
Kemp
,
P. H.
, and
Simons
,
R. R.
,
1982
, “
The Interaction Between Waves and a Turbulent Current: Waves Propagating With the Current
,”
J. Fluid Mech.
,
116
, pp.
227
250
.
13.
Kemp
,
P. H.
, and
Simons
,
R. R.
,
1983
, “
The Interaction of Waves and a Turbulent Current: Waves Propagating Against the Current
,”
J. Fluid Mech.
,
130
(
1
), pp.
73
89
.
14.
Klopman
,
G.
,
1994
,
Vertical Structure of the Flow Due to Waves and Currents
,
Delft Hydraulics
,
Netherlands
.
15.
Umeyama
,
M.
,
2005
, “
Reynolds Stresses and Velocity Distributions in a Wave-Current Coexisting Environment
,”
J. Waterw. Port Coastal Ocean Eng.
,
131
(
5
), pp.
203
212
.
16.
Mazumder
,
B. S.
, and
Ojha
,
S. P.
,
2007
, “
Turbulence Statistics of Flow Due to Wave-Current Interaction
,”
Flow Meas. Instrum.
,
18
(
3–4
), pp.
129
138
.
17.
Umeyama
,
M.
,
2009
, “
Changes in Turbulent Flow Structure Under Combined Wave-Current Motions
,”
J. Waterw. Port Coastal Ocean Eng.
,
135
(
5
), pp.
213
227
.
18.
Umeyama
,
M.
,
2011
, “
Coupled PIV and PTV Measurements of Particle Velocities and Trajectories for Surface Waves Following a Steady Current
,”
J. Waterw. Port Coastal Ocean Eng.
,
137
(
2
), pp.
85
94
.
19.
van Hoften
,
J. D. A.
,
1976
,
Thesis
.
20.
Singh
,
S. K.
, and
Debnath
,
K.
,
2016
, “
Combined Effects of Wave and Current in Free Surface Turbulent Flow
,”
Ocean Eng.
,
127
, pp.
170
189
.
21.
Singh
,
S. K.
, and
Debnath
,
K.
,
2017
, “
Turbulence Characteristics of Flow Under Combined Wave-Current Motion
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
2
), p. 021102.
22.
Singh
,
S. K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2016
, “
Spatially-Averaged Turbulent Flow Over Cubical Roughness in Wave-Current Co-Existing Environment
,”
Coast. Eng.
,
114
, pp.
77
85
.
23.
Wolf
,
J.
, and
Prandle
,
D.
,
1999
, “
Some Observations of Wave-Current Interaction
,”
Coast. Eng.
,
37
(
3–4
), pp.
471
485
.
24.
Choi
,
J.
, and
Yoon
,
S. B.
,
2009
, “
Numerical Simulations Using Momentum Source Wave-Maker Applied to RANS Equation Model
,”
Coast. Eng.
,
56
(
10
), pp.
1043
1060
.
25.
He
,
M.
,
Gao
,
X. F.
, and
Xu
,
W. H.
,
2018
, “
Numerical Simulation of Wave-Current Interaction Using the SPH Method
,”
J. Hydrodyn.
,
30
(
3
), pp.
535
538
.
26.
Golshan
,
R.
,
Tejada-Martínez
,
A. E.
,
Juha
,
M. J.
, and
Bazilevs
,
Y.
,
2017
, “
LES and RANS Simulation of Wind- and Wave-Forced Oceanic Turbulent Boundary Layers in Shallow Water With Wall Modeling
,”
Comput. Fluids
,
142
, pp.
96
108
.
27.
Yang
,
D.
, and
Shen
,
L.
,
2017
, “
Direct Numerical Simulation of Scalar Transport in Turbulent Flows Over Progressive Surface Waves
,”
J. Fluid Mech.
,
819
, pp.
58
103
.
28.
Zhang
,
J. S.
,
Zhang
,
Y.
,
Jeng
,
D. S.
,
Liu
,
P. L. F.
, and
Zhang
,
C.
,
2014
, “
Numerical Simulation of Wave-Current Interaction Using a RANS Solver
,”
Ocean Eng.
,
75
, pp.
157
164
.
29.
Teles
,
M. J.
,
Pires-Silva
,
A. A.
, and
Benoit
,
M.
,
2013
, “
Numerical Modelling of Wave Current Interactions at a Local Scale
,”
Ocean Modell.
,
68
, pp.
72
87
.
30.
Guo
,
X.
, and
Shen
,
L.
,
2013
, “
Numerical Study of the Effect of Surface Waves on Turbulence Underneath. Part 1. Mean Flow and Turbulence Vorticity
,”
J. Fluid Mech.
,
733
, pp.
558
587
.
31.
Havelock
,
T. H.
,
1929
, “
LIX. Forced Surface-Waves on Water
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
8
(
51
), pp.
569
576
.
32.
Higuera
,
P.
,
Losada
,
I. J.
, and
Lara
,
J. L.
,
2015
, “
Three-Dimensional Numerical Wave Generation with Moving Boundaries
,”
Coast. Eng.
,
101
, pp.
35
47
.
33.
Martínez-Ferrer
,
P. J.
,
Qian
,
L.
,
Ma
,
Z.
,
Causon
,
D. M.
, and
Mingham
,
C. G.
,
2018
, “
Improved Numerical Wave Generation for Modelling Ocean and Coastal Engineering Problems
,”
Ocean Eng.
,
152
, pp.
257
272
.
34.
Inverno
,
J.
,
Neves
,
M. G.
,
Didier
,
E.
, and
Lara
,
J. L.
,
2016
, “
Numerical Simulation of Wave Interacting With a Submerged Cylinder Using a 2D RANS Model
,”
J. Hydro-Environ. Res.
,
12
, pp.
1
15
.
35.
Le Merle
,
E.
,
Hauser
,
D.
,
Peureux
,
C.
,
Aouf
,
L.
,
Schippers
,
P.
,
Dufour
,
C.
, and
Dalphinet
,
A.
,
2021
, “
Directional and Frequency Spread of Surface Ocean Waves from SWIM Measurements
,”
J. Geophys. Res. Oceans
,
126
(
7
), pp.
1
22
.
36.
Vanem
,
E.
,
Gramstad
,
O.
,
Babanin
,
A.
,
De Bin
,
R.
, and
Trulsen
,
K.
,
2024
, “
On the Distribution of Ocean Wave Crest Heights in Varying Wave Conditions
,”
J. Ocean Eng. Mar. Energy
,
10
(
4
), pp.
797
815
.
37.
Peters
,
S. E.
, and
Loss
,
D. P.
,
2012
, “
Storm and Fair-Weather Wave Base: A Relevant Distinction?
,”
Geology
,
40
(
6
), pp.
511
514
.
38.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1984
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific
,
Singapore
.
39.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Phys.
,
143
(
1
), pp.
90
124
.
40.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation κ-ω Turbulence Models for Aerodynamic Flows
,”
AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6–9
,
p. 2906
.
41.
Hedges
,
T. S.
,
1995
, “
Regions of Validity of Analytical Wave Theories
,”
Proc. Inst. Civ. Eng. Wat. Marit. Energy
,
112
(
2
), pp.
111
114
.
42.
Rudolph
,
D.
, and
Bos
,
K. J.
,
2006
, “
Scour Around a Monopile Under Combined Wavecurrent Conditions and Low KC-Numbers
,”
Proceedings of the Third International Conference on Scour and Erosion
,
Amsterdam, Netherlands
,
Nov. 1–3
.
43.
Kang
,
A.
, and
Zhu
,
B.
,
2013
, “
Wave-Current Interaction With a Vertical Square Cylinder at Different Reynolds Numbers
,”
J. Mod. Transp.
,
21
(
1
), pp.
47
57
.
44.
Yang
,
Q. Y.
,
Liu
,
T. H.
,
Lu
,
W. Z.
, and
Wang
,
X. K.
,
2013
, “
Numerical Simulation of Confluence Flow in Open Channel With Dynamic Meshes Techniques
,”
Adv. Mech. Eng.
,
5
, p.
860431
.
45.
Liang
,
X. F.
,
Yang
,
J. M.
,
Li
,
J.
,
Xiao
,
L. F.
, and
Li
,
X.
,
2010
, “
Numerical Simulation of Irregular Wave-Simulating Irregular Wave Train
,”
J. Hydrodyn.
,
22
(
4
), pp.
537
545
.
46.
Finnegan
,
W.
, and
Goggins
,
J.
,
2012
, “
Numerical Simulation of Linear Water Waves and Wavestructure Interaction
,”
Ocean Eng.
,
43
, pp.
23
31
.
47.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computationl Methods for Fluid Dynamics
,
Springer
,
Berlin
.
48.
Farhadi
,
A.
,
Mayrhofer
,
A.
,
Tritthart
,
M.
,
Glas
,
M.
, and
Habersack
,
H.
,
2018
, “
Accuracy and Comparison of Standard K-ε With Two Variants of k-ω Turbulence Models in Fluvial Applications
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
216
235
.
49.
Garcia-Ribeiro
,
D.
,
Malatesta
,
V.
,
Moura
,
R. C.
, and
Cerón-Muñoz
,
H. D.
,
2023
, “
Assessment of RANS-Type Turbulence Models for CFD Simulations of Horizontal Axis Wind Turbines at Moderate Reynolds Numbers
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
11
), pp.
1
21
.
50.
Yuan
,
J.
, and
Madsen
,
O. S.
,
2015
, “
Experimental and Theoretical Study of Wave-Current Turbulent Boundary Layers
,”
J. Fluid Mech.
,
765
, pp.
480
523
. .
51.
Fredsøe
,
J.
,
1985
, “
Turbulent Boundary Layer in Wave-Current Motion
,”
J. Hydraul. Eng.
,
110
(
8
), pp.
1103
1120
.
52.
Xie
,
Y.
,
Zhao
,
X.
, and
Liu
,
Z.
,
2023
, “
A Simple Approach for Wave Absorbing Control of Plunger Wavemakers Using Machine Learning: Numerical Study
,”
Coast. Eng.
,
179
, p.
104253
.
53.
Chen
,
Y. Y.
,
Hsu
,
H. C.
, and
Hwung
,
H. H.
,
2012
, “
Particle Trajectories Beneath Wave-Current Interaction in a Two-Dimensional Field
,”
Nonlinear Processes Geophys.
,
19
(
2
), pp.
185
197
.
54.
Xuan
,
A.
,
Deng
,
B. Q.
, and
Shen
,
L.
,
2020
, “
Numerical Study of Effect of Wave Phase on Reynolds Stresses and Turbulent Kinetic Energy in Langmuir Turbulence
,”
J. Fluid Mech.
,
904
.
55.
Hansda
,
S.
,
Das
,
V. K.
, and
Debnath
,
K.
,
2022
,
Temporal Modulation of Turbulence Structure Over Progressive Erosion Boundary Under Influence of Wave Current Combined Flow
,
Springer
,
Netherlands
.
56.
Singh
,
S. K.
,
Raushan
,
P. K.
, and
Debnath
,
K.
,
2018
, “
Combined Effect of Wave and Current in Rough Bed Free Surface Flow
,”
Ocean Eng.
,
160
, pp.
20
32
.
57.
Hansda
,
S.
,
Kumar
,
V.
, and
Koustuv
,
D.
,
2022
, “
Temporal Modulation of Turbulence Structure Over Progressive Erosion Boundary Under Influence of Wave Current Combined Flow
,”
Environ. Fluid Mech.
,
22
(
4
), p.
0123456789
.
58.
Moghimi
,
S.
,
Thomson
,
J.
,
Özkan-Haller
,
T.
,
Umlauf
,
L.
, and
Zippel
,
S.
,
2016
, “
On the Modeling of Wave-Enhanced Turbulence Nearshore
,”
Ocean Modell.
,
103
, pp.
118
132
.
59.
Yu
,
X.
,
Rosman
,
J. H.
, and
Hench
,
J. L.
,
2022
, “
Boundary Layer Dynamics and Bottom Friction in Combined Wave-Current Flows Over Large Roughness Elements
,”
J. Fluid Mech.
,
931
, pp.
1
29
. .
60.
Hansda
,
S.
,
Debnath
,
K.
, and
Pal
,
D.
,
2024
, “
Effect of D-Type Rib Roughness on the Turbulent Structure of Side Wall Boundary Layer for Wave-Current Combined Flow
,”
Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
,
238
(
1
), pp.
186
208
.
61.
McCaffrey
,
K.
,
Fox-Kemper
,
B.
,
Hamlington
,
P. E.
, and
Thomson
,
J.
,
2015
, “
Characterization of Turbulence Anisotropy, Coherence, and Intermittency at a Prospective Tidal Energy Site: Observational Data Analysis
,”
Renewable Energy
,
76
, pp.
441
453
.
62.
Shounda
,
J.
,
Barman
,
K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2024
, “
Distribution of Turbulent Eddies Under Wave-Current Coexisting Flow Over Hemispherical Rough Bed
,”
Stoch. Environ. Res. Risk Assess.
,
38
(
12
), pp.
4761
4794
.
63.
Pope
,
S. B.
,
2014
, “
Turblent Flows
,”
Elem. Educ. Online
,
13
(
2
), pp.
710
725
.
64.
Raushan
,
P. K.
,
Singh
,
S. K.
, and
Debnath
,
K.
,
2021
, “
Turbulence Characteristics of Oscillating Flow Through Passive Grid
,”
Ocean Eng.
,
224
, p.
108727
.
You do not currently have access to this content.