Abstract

Existing wave energy converters (WECs) are limited by high unit energy costs, narrow bandwidths, and vulnerability to seawater corrosion, making it difficult for wave energy to compete with solar and wind energy. This paper presents a fully enclosed WEC based on cable-driven parallel mechanisms, which absorbs energy from multiple directions to enhance the total energy absorption efficiency and bandwidth. The configuration of the inner cable-parallel mechanism (CDPM) is the key to this improved absorption efficiency. A configuration synthesis method of cable-driven parallel mechanisms is proposed to generate more configurations for the fully enclosed WEC. The motion equation of the fully enclosed WEC is derived to evaluate the power absorption performance. Moreover, a configuration synthesis method for realizing n-degrees-of-freedom (DOF) configurations in the fully-constrained CDPMs is proposed, and the configurations of these nDOF fully-constrained CDPMs with (n + 1) cables are acquired. Then, the power absorption performance under different power take-off system parameters and wave frequencies is calculated, and the effects of the CDPM configuration are investigated. The results indicate that the proposed WECs exhibit excellent performance in mean absorbed power and bandwidth. Several principles for configuration selection are provided to further improve the performance of the CDPM-based fully enclosed WEC.

References

1.
Elhanafi
,
A.
,
Macfarlane
,
G.
,
Fleming
,
A.
, and
Leong
,
Z.
,
2017
, “
Experimental and Numerical Investigations on the Hydrodynamic Performance of a Floating–Moored Oscillating Water Column Wave Energy Converter
,”
Appl. Energy
,
205
, pp.
369
390
.
2.
Martins
,
J. C.
,
Goulart
,
M. M.
,
Gomes
,
M. D. N.
,
Souza
,
J. A.
,
Rocha
,
L. A. O.
,
Isoldi
,
L. A.
, and
Dos Santos
,
E. D.
,
2018
, “
Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design
,”
Renewable Energy
,
118
, pp.
727
741
.
3.
Chow
,
Y.
,
Chang
,
Y.
,
Lin
,
C.
,
Chen
,
J.
, and
Tzang
,
S.
,
2018
, “
Experimental Investigations on Wave Energy Capture of Two Bottom-Hinged-Flap WECs Operating in Tandem
,”
Ocean Eng.
,
164
, pp.
322
331
.
4.
Khojasteh
,
D.
, and
Kamali
,
R.
,
2016
, “
Evaluation of Wave Energy Absorption by Heaving Point Absorbers at Various Hot Spots in Iran Seas
,”
Energy
,
109
, pp.
629
640
.
5.
Tarrant
,
K.
, and
Meskell
,
C.
,
2016
, “
Investigation on Parametrically Excited Motions of Point Absorbers in Regular Waves
,”
Ocean Eng.
,
111
, pp.
67
81
.
6.
Chatzigiannakou
,
M.
,
Dolguntseva
,
I.
, and
Leijon
,
M.
,
2017
, “
Offshore Deployments of Wave Energy Converters by Sea Based Industry AB
,”
J. Mar. Sci. Eng.
,
5
(
2
), p.
15
.
7.
Guo
,
B.
,
Wang
,
T.
,
Jin
,
S.
,
Duan
,
S.
,
Yang
,
K.
, and
Zhao
,
Y.
,
2022
, “
A Review of Point Absorber Wave Energy Converters
,”
J. Mar. Sci. Eng.
,
10
(
10
), p.
1534
.
8.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
.
9.
Liu
,
T.
,
Hu
,
Y.
,
Xu
,
H.
,
Wang
,
Q.
, and
Du
,
W.
,
2019
, “
A Novel Vectored Thruster Based on 3-RPS Parallel Manipulator for Autonomous Underwater Vehicles
,”
Mech. Mach. Theory
,
133
, pp.
646
672
.
10.
Liu
,
T.
,
Hu
,
Y.
,
Xu
,
H.
,
Zhang
,
Z.
, and
Li
,
H.
,
2019
, “
Investigation of the Vectored Thruster AUVs Based on 3SPS-S Parallel Manipulator
,”
Appl. Ocean Res.
,
85
, pp.
151
161
.
11.
Jiang
,
D.
,
Zheng
,
T.
,
Yang
,
G.
,
Tian
,
Y.
,
Fang
,
Z.
,
Li
,
H.
,
Zhang
,
C.
, and
Ye
,
H.
,
2022
, “
Design and Analysis of a Stiffness-Enhanced 3-PPS Parallel Mechanism for Fault-Tolerant Underwater Vectored Thrusters
,”
Machines
,
10
(
2
), p.
88
.
12.
Henriksen
,
V. W.
,
Røine
,
A. G.
,
Skjong
,
E.
, and
Johansen
,
T. A.
,
2016
, “
Three-Axis Motion Compensated Crane Head Control
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
159
166
.
13.
Liu
,
X.
,
Zhao
,
T.
,
Luo
,
E.
,
Chen
,
W.
, and
Pan
,
Q.
,
2013
, “
Coupling 3-PSR/PSU 5-Axis Compensation Mechanism for Stabilized Platform and Its Analysis
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
227
(
7
), pp.
1619
1629
.
14.
Gao
,
H.
, and
Yu
,
Y.
,
2018
, “
The Dynamics and Power Absorption of Cone-Cylinder Wave Energy Converters With Three Degree of Freedom in Irregular Waves
,”
Energy
,
143
, pp.
833
845
.
15.
Yao
,
T.
,
Wang
,
Y.
,
Wang
,
Z.
,
Li
,
T.
, and
Tan
,
Z.
,
2022
, “
Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism
,”
Energies
,
15
(
5
), p.
1670
.
16.
Wang
,
Y.
,
Yu
,
F.
,
Li
,
Q.
, and
Chen
,
Y.
,
2023
, “
Dual-Space Configuration Synthesis Method for Rigid-Flexible Coupled Cable-Driven Parallel Mechanisms
,”
Ocean Eng.
,
271
, p.
113753
.
17.
Ren
,
Z.
,
Verma
,
A. S.
,
Ataei
,
B.
,
Halse
,
K. H.
, and
Hildre
,
H. P.
,
2021
, “
Model-Free Anti-Swing Control of Complex-Shaped Payload With Offshore Floating Cranes and a Large Number of Lift Wires
,”
Ocean Eng.
,
228
, p.
108868
.
18.
Gouttefarde
,
M.
,
Rodriguez
,
M.
,
Barrelet
,
C.
,
Hervé
,
P.
,
Creuze
,
V.
,
Gorrotxategi
,
J.
,
Oyarzabal
,
A.
, et al.
,
2023
, “
The Robotic Seabed Cleaning Platform: An Underwater Cable-Driven Parallel Robot for Marine Litter Removal
,”
The 6th International Conference on Cable-Driven Parallel Robots
,
Nantes, France
,
June 25–28
, pp.
430
441
.
19.
Horoub
,
M.
, and
Hawwa
,
M.
,
2018
, “
Influence of Cables Layout on the Dynamic Workspace of a Six-DOF Parallel Marine Manipulator
,”
Mech. Mach. Theory
,
129
, pp.
191
201
.
20.
Horoub
,
M. M.
,
Hassan
,
M.
, and
Hawwa
,
M. A.
,
2018
, “
Workspace Analysis of a Gough-Stewart Type Cable Marine Platform Subjected to Harmonic Water Waves
,”
Mech. Mach. Theory
,
120
, pp.
314
325
.
21.
Sergiienko
,
N. Y.
,
Rafiee
,
A.
,
Cazzolato
,
B. S.
,
Ding
,
B.
, and
Arjomandi
,
M.
,
2018
, “
Feasibility Study of the Three-Tether Axisymmetric Wave Energy Converter
,”
Ocean Eng.
,
150
, pp.
221
233
.
22.
Faraggiana
,
E.
,
Chapman
,
J. C.
,
Williams
,
A. J.
,
Whitlam
,
C.
, and
Masters
,
I.
,
2022
, “
Investigation of New Layout Design Concepts of an Array-on-Device Wave Sub Device
,”
Renewable Energy
,
190
, pp.
501
523
.
23.
Chen
,
Z.
,
Zhou
,
B.
,
Zhang
,
L.
,
Sun
,
L.
, and
Zhang
,
X.
,
2018
, “
Performance Evaluation of a Dual Resonance Wave-Energy Convertor in Irregular Waves
,”
Appl. Ocean Res.
,
77
, pp.
78
88
.
24.
Wu
,
J.
,
Qian
,
C.
,
Zheng
,
S.
,
Chen
,
N.
,
Xia
,
D.
, and
Göteman
,
M.
,
2022
, “
Investigation on the Wave Energy Converter That Reacts Against an Internal Inverted Pendulum
,”
Energy
,
247
, p.
123493
.
25.
Nicola
,
P.
,
Giovanni
,
B.
,
Biagio
,
P.
,
Antonello
,
S. S.
,
Giacomo
,
V.
,
Giuliana
,
M.
, and
Gianmaria
,
S.
,
2017
, “
Wave Tank Testing of a Pendulum Wave Energy Converter 1:12 Scale Model
,”
Int. J. Appl. Mech.
,
09
(
02
), p.
1750024
.
26.
Cordonnier
,
J.
,
Gorintin
,
F.
,
De Cagny
,
A.
,
Clément
,
A. H.
, and
Babarit
,
A.
,
2015
, “
SEAREV: Case Study of the Development of a Wave Energy Converter
,”
Renewable Energy
,
80
, pp.
40
52
.
27.
Ning
,
D.
, and
Ding
,
B.
,
2023
,
Modelling and Optimization of Wave Energy Converters
,
CRC Press
,
Boca Raton, FL
.
28.
Ameri
,
A.
,
Molaei
,
A.
,
Khosravi
,
M. A.
, and
Hassani
,
M.
,
2022
, “
Control-Based Tension Distribution Scheme for Fully Constrained Cable-Driven Robots
,”
IEEE Trans. Ind. Electron.
,
69
(
11
), pp.
11383
11393
.
29.
Aflakian
,
A.
,
Safaryazdi
,
A.
,
Tale Masouleh
,
M.
, and
Kalhor
,
A.
,
2018
, “
Experimental Study on the Kinematic Control of a Cable Suspended Parallel Robot for Object Tracking Purpose
,”
Mechatronics
,
50
, pp.
160
176
.
30.
Li
,
L.
,
Fang
,
Y.
,
Yao
,
J.
, and
Wang
,
L.
,
2022
, “
Type Synthesis of a Family of Novel Parallel Leg Mechanisms Driven by a 3-DOF Drive System
,”
Mech. Mach. Theory
,
167
, pp.
104572
104591
.
31.
Ye
,
W.
,
Li
,
Q.
, and
Chai
,
X.
,
2022
, “
Type Synthesis of 4-DOF Non-Overconstrained Parallel Mechanisms With Symmetrical Structures
,”
Machines
,
10
(
12
), pp.
1123
1136
.
32.
Liu
,
Y.
,
Li
,
Y.
,
Yao
,
Y.
, and
Kong
,
X.
,
2020
, “
Type Synthesis of Multi-Mode Mobile Parallel Mechanisms Based on Refined Virtual Chain Approach
,”
Mech. Mach. Theory
,
152
, p.
103908
.
33.
Long
,
S.
,
Terakawa
,
T.
, and
Komori
,
M.
,
2022
, “
Type Synthesis of 6-DOF Mobile Parallel Link Mechanisms Based on Screw Theory
,”
J. Adv. Mech. Des. Syst. Manuf.
,
16
(
1
), pp.
5
23
.
34.
Qu
,
S.
,
Li
,
R.
,
Ma
,
C.
, and
Li
,
H.
,
2021
, “
Type Synthesis for Lower-Mobility Decoupled Parallel Mechanism With Redundant Constraints
,”
J. Mech. Sci. Technol.
,
35
(
6
), pp.
2657
2666
.
35.
Wei
,
J.
, and
Dai
,
J. S.
,
2020
, “
Lie Group Based Type Synthesis Using Transformation Configuration Space for Reconfigurable Parallel Mechanisms With Bifurcation Between Spherical Motion and Planar Motion
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063302
.
36.
Qu
,
S.
,
Li
,
R.
, and
Bai
,
S.
,
2017
, “
Type Synthesis of 2T1R Decoupled Parallel Mechanisms Based on Lie Groups and Screw Theory
,”
Math. Probl. Eng.
,
2017
(
1
), pp.
8304312
8304322
.
37.
Lin
,
R.
,
Guo
,
W.
, and
Cheng
,
S. S.
,
2022
, “
Type Synthesis of 2R1T Remote Center of Motion Parallel Mechanisms With a Passive Limb for Minimally Invasive Surgical Robot
,”
Mech. Mach. Theory
,
172
, pp.
104766
104784
.
38.
Zeng
,
Q.
,
Shen
,
H.
,
Qiang
,
H.
, and
Yang
,
T.
,
2017
, “
Topological Characteristics Analysis for a Family of Novel SCARA Parallel Mechanisms
,” Singapore.
39.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
40.
He
,
J.
,
Gao
,
F.
,
Meng
,
X.
, and
Guo
,
W.
,
2015
, “
Type Synthesis for 4-DOF Parallel Press Mechanism Using GF Set Theory
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
851
859
.
41.
Gao
,
F.
,
Yang
,
J. L.
, and
Ge
,
Q. J.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class G(F) Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.
42.
Verhoeven
,
R.
,
2004
, “
Analysis of the Workspace of Tendon-Based Stewart Platforms
,” University of Duisburg-Essen.
43.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Robot.
,
22
(
3
), pp.
434
445
.
44.
Feiler
,
G.
,
Schwegel
,
M.
,
Knechtelsdorfer
,
U.
, and
Kugi
,
A.
,
2022
, “
Design and Analysis of a Class of Planar Cable-Driven Parallel Robots With Arbitrary Rotation
,”
9th IFAC Symposium on Mechatronic Systems
,
Los Angeles, CA
,
Sept. 6–9
, pp.
82
88
. .
45.
Sun
,
C.
,
Gao
,
H.
,
Liu
,
Z.
,
Xiang
,
S.
,
Yu
,
H.
,
Li
,
N.
, and
Deng
,
Z.
,
2021
, “
Design and Optimization of Three-Degree-of-Freedom Planar Adaptive Cable-Driven Parallel Robots Using the Cable Wrapping Phenomenon
,”
Mech. Mach. Theory
,
166
, pp.
104475
104487
.
46.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Robot.
,
27
(
1
), pp.
1
13
.
47.
Abdolshah
,
S.
, and
Shojaei Barjuei
,
E.
,
2015
, “
Linear Quadratic Optimal Controller for Cable-Driven Parallel Robots
,”
Front Mech. Eng.
,
10
(
4
), pp.
344
351
.
48.
Abbasnejad
,
G.
,
Eden
,
J.
, and
Lau
,
D.
,
2019
, “
Generalized Ray-Based Lattice Generation and Graph Representation of Wrench-Closure Workspace for Arbitrary Cable-Driven Robots
,”
IEEE Trans. Robot.
,
35
(
1
), pp.
147
161
.
49.
Diao
,
X.
,
2015
, “
Singularity Analysis of Fully-Constrained Cable-Driven Parallel Robots With Seven Cables
,”
2015 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Beijing, China
,
Aug. 2–5
, pp.
1537
1541
.
50.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.
51.
Duan
,
Q. J.
, and
Duan
,
X.
,
2014
, “
Workspace Classification and Quantification Calculations of Cable-Driven Parallel Robots
,”
Adv. Mech. Eng.
,
6
, p.
358727
.
52.
Wu
,
Y.
, and
Carricato
,
M.
,
2020
, “
Persistent Manifolds of the Special Euclidean Group SE(3): A Review
,”
Comput. Aided Geom. Des.
,
79
, pp.
101872
101895
.
53.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Design and Development of a Schönflies-Motion Parallel Robot With Articulated Platforms and Closed-Loop Passive Limbs
,”
Rob. Comput. Integr. Manuf.
,
77
, p.
102352
.
54.
Li
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
L.
,
2020
, “
A New Method for Type Synthesis of 2R1T and 2T1R 3-DOF Redundant Actuated Parallel Mechanisms With Closed Loop Units
,”
Chin. J. Mech. Eng
,
33
(
1
), pp.
78
101
.
55.
Wang
,
D.
,
Zhang
,
J.
,
Guo
,
H.
,
Liu
,
R.
, and
Kou
,
Z.
,
2022
, “
Design of a 2T1R-Type Parallel Mechanism: Performance Analysis and Size Optimization
,”
Actuators
,
11
(
9
), pp.
262
278
.
56.
Wang
,
Y.
,
Lyu
,
C.
, and
Liu
,
J.
,
2021
, “
Kinematic Analysis and Verification of a New 5-DOF Parallel Mechanism
,”
Appl. Sci.
,
11
(
17
), pp.
8157
8179
.
57.
Slavutin
,
M.
, and
Reich
,
Y.
,
2020
, “
Singularity Analysis of Some Multi-platform Mechanisms by Decomposition and Reciprocality
,”
Mech. Mach. Theory
,
146
, pp.
103735
103749
.
58.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
59.
Ding
,
D.
,
Liu
,
Y.
, and
Wang
,
S.
,
2000
, “
Computing 3-D Optimal Form-Closure Grasps
,”
Proceedings of the 2000 IEEE International Conference on Robotics & Automation
,
San Francisco, CA
,
Apr. 24–28
, pp.
3573
3578
.
60.
Bachynski
,
E. E.
,
Young
,
Y. L.
, and
Yeung
,
R. W.
,
2012
, “
Analysis and Optimization of a Tethered Wave Energy Converter in Irregular Waves
,”
Renewable Energy
,
48
, pp.
133
145
.
61.
Han
,
L.
,
Wang
,
J.
,
Gao
,
J.
,
Wang
,
X.
, and
Wu
,
H.
,
2020
, “
Analysis of Wave Energy Resources in Northern Waters of Chudao Island in Shandong Province
,”
Acta Energ. Sol. Sin.
,
41
(
02
), pp.
165
171
.
You do not currently have access to this content.