Abstract

This study presents the adaptation of a torus-shaped prime mover of a wave energy converter to an onshore or nearshore fixed platform by a hinged arm, with the objective of providing more favorable conditions for device survivability at extreme sea state. An optimization code is developed to obtain the best prime mover and arm geometries, as well as the power take-off parameters, with the objective to maximize the total absorbed power. In this paper, the power take-off system is modeled as a simplified damper and spring system, where the parameters are optimized for the power absorption of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. The results indicate that better survivability performance may be achieved with the torus-shaped prime mover in comparison to a conventional one without a moonpool, despite a relatively lower wave-absorbed power.

References

1.
Cruz
,
J.
,
2008
,
Ocean Wave Energy: Current Status and Future Perspectives
,
Springer
,
Berlin, DE
.
2.
Guedes Soares
,
C.
,
Bhattacharjee
,
J.
,
Tello
,
M.
, and
Pietra
,
L.
,
2012
, “Review and Classification of Wave Energy Converters,”
Maritime Engineering and Technology
,
C.
Guedes Soares
,
Y.
Garbatov
,
S.
Sutulo
, and
T. A.
Santos
, eds.,
Taylor and Francis Group
,
London
, pp.
585
594
.
3.
Falcão
,
A. F. d. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
4.
Drew
,
B.
,
Plummer
,
A. R.
, and
Sahinkaya
,
M. N.
,
2009
, “
A Review of Wave Energy Converter Technology
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
8
), pp.
887
902
.
5.
Tiron
,
R.
,
Mallon
,
F.
,
Dias
,
F.
, and
Reynaud
,
E. G.
,
2015
, “
The Challenging Life of Wave Energy Devices at Sea: A Few Points to Consider
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1263
1272
.
6.
Mueller
,
M.
, and
Jeffrey
,
H.
,
2008
, “
UKERC Marine (Wave and Tidal Current) Renewable Energy Technology Roadmap
”, Summary Report, UK Energy Research Centre, University of Edinburgh, Edinburgh, UK.
7.
Ransley
,
E. J.
,
Greaves
,
D.
,
Raby
,
A.
,
Simmonds
,
D.
, and
Hann
,
M.
,
2017
, “
Survivability of Wave Energy Converters Using CFD
,”
Renewable Energy
,
109
, pp.
235
247
.
8.
Coe
,
R. G.
,
Michelen
,
C.
,
Eckert-Gallup
,
A.
, and
Sallaberry
,
C.
,
2018
, “
Full Long-Term Design Response Analysis of a Wave Energy Converter: Variable Aperture Point-Absorber (VAPA)
,”
Renewable Energy
,
116
, pp.
356
366
.
9.
Hansen
,
R. H.
, and
Kramer
,
M. M.
,
2011
, “
Modelling and Control of the Wavestar Prototype
,”
Proceedings of the 9
th
European Wave and Tidal Energy Conference, EWTEC 2011
,
Sept. 5–9
,
University of Southampton
,
UK
, pp.
1
10
.
10.
Shadman
,
M.
,
Silva
,
C.
,
Faller
,
D.
,
Wu
,
Z.
,
de Freitas Assad
,
L. P.
,
Landau
,
L.
,
Levi
,
C.
, and
Estefen
,
S. F.
,
2019
, “
Ocean Renewable Energy Potential, Technology and Deployments: A Case Study of Brazil
,”
Energies
,
12
(
19
), p.
3658
.
11.
Sjolte
,
J.
,
Sandvik
,
C. M.
,
Tedeschi
,
E.
, and
Molinas
,
M.
,
2013
, “
Exploring the Potential for Increased Production From the Wave Energy Converter Lifesaver by Reactive Control
,”
Energies
,
6
(
8
), pp.
3706
3733
.
12.
Sjolte
,
J.
,
Tjensvoll
,
G.
, and
Molinas
,
M.
,
2013
, “
Power Collection From Wave Energy Farms
,”
Appl. Sci.
,
3
(
2
), pp.
420
436
.
13.
Engstrӧm
,
J.
,
Sjӧkvist
,
L.
,
Gӧteman
,
M.
,
Eriksson
,
M.
,
Hann
,
M.
,
Ransley
,
E.
,
Greaves
,
D.
, and
Leijon
,
M.
,
2017
, “
Buoy Geometry and Its Influence on Survivability for a Point Absorbing Wave Energy Converter: Scale Experiment and CFD Simulations
,”
Proceedings of the 5th Marine Energy Technology Symposium (METS)
,
Washington, DC
,
May 1–3
.
14.
Gӧteman
,
M.
,
Engstrӧm
,
J.
,
Eriksson
,
M.
,
Hann
,
M.
,
Ransley
,
E.
,
Greaves
,
D.
, and
Leijon
,
M.
,
2015
, “
Wave Loads on a Point-Absorbing Wave Energy Device in Extreme Waves
,”
J. Ocean Wind Energy
,
2
(
3
), pp.
176
181
.
15.
Zheng
,
S.
,
Zhang
,
Y.
, and
Iglesias
,
G.
,
2020
, “
Concept and Performance of a Novel Wave Energy Converter: Variable Aperture Point-Absorber (VAPA)
,”
Renewable Energy
,
153
, pp.
681
700
.
16.
Garcia-Teruel
,
A.
, and
Forehand
,
D. I. M.
,
2021
, “
A Review of Geometry Optimisation of Wave Energy Converters
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110593
.
17.
Guo
,
B.
, and
Ringwood
,
J. V.
,
2021
, “
Geometric Optimisation of Wave Energy Conversion Devices: A Survey
,”
Appl. Energy
,
297
, p.
117100
.
18.
Esmaeilzadeh
,
S.
, and
Alam
,
M. R.
,
2019
, “
Shape Optimization of Wave Energy Converters for Broadband Directional Incident Waves
,”
Ocean Eng.
,
174
, pp.
186
200
.
19.
Kamarlouei
,
M.
,
Gaspar
,
J. F.
, and
Guedes Soares
,
C.
,
2022
, “
Optimal Design of an Axisymmetric Two-Body Wave Energy Converter With Translational Hydraulic Power Take-Off System
,”
Renewable Energy
,
183
, pp.
586
600
.
20.
Sharp
,
C.
, and
DuPont
,
B.
,
2018
, “
Wave Energy Converter Array Optimization: A Genetic Algorithm Approach and Minimum Separation Distance Study
,”
Ocean Eng.
,
163
, pp.
148
156
.
21.
Simonetti
,
I.
,
Cappietti
,
L.
, and
Oumeraci
,
H.
,
2018
, “
An Empirical Model as a Supporting Tool to Optimize the Main Design Parameters of a Stationary Oscillating Water Column Wave Energy Converter
,”
Appl. Energy
,
231
, pp.
1205
1215
.
22.
Giannini
,
G.
,
López
,
M.
,
Ramos
,
V.
,
Rodríguez
,
C. A.
,
Rosa-Santos
,
P.
, and
Taveira-Pinto
,
F.
,
2021
, “
Geometry Assessment of a Sloped Type Wave Energy Converter
,”
Renewable Energy
,
171
, pp.
672
686
.
23.
De Backer
,
G.
,
2009
, “
Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers
,”
Ph.D. dissertation
, Department of Civil Engineering, Ghent University, Ghent, Belgium, https://tethys-engineering.pnnl.gov/knowledge-base.
24.
Hallak
,
T. S.
,
Gaspar
,
J. F.
,
Kamarlouei
,
M.
, and
Guedes Soares
,
C.
, Numerical and Experimental Analyses of a Conical Point-Absorber Moving Around a Hinge,”
Developments in Maritime Technology and Engineering
,
C.
Guedes Soares
, and
T. A.
Santos
, eds.,
Taylor and Francis
,
London, UK
, Vol.
2
, pp.
587
596
.
25.
Calvário
,
M.
,
Gaspar
,
J.
,
Kamarlouei
,
M.
,
Hallak
,
T. S.
, and
Guedes Soares
,
C.
,
2020
, “
Oil-Hydraulic Power Take-Off Concept for an Oscillating Wave Surge Converter
,”
Renewable Energy
,
159
, pp.
1297
1309
.
26.
Gaspar
,
J. F.
,
Kamarlouei
,
M.
,
Thiebaut
,
F.
, and
Guedes Soares
,
C.
,
2021
, “
Compensation of a Hybrid Platform Dynamics Using Wave Energy Converters in Different Sea State Conditions
,”
Renewable Energy
,
177
, pp.
871
883
.
27.
Silva
,
D.
,
Rusu
,
E.
, and
Guedes Soares
,
C.
,
2013
, “
Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore
,”
Energies
,
6
(
3
), pp.
1344
1364
.
28.
Silva
,
D.
,
Bento
,
A. R.
,
Martinho
,
P.
, and
Guedes Soares
,
C.
,
2015
, “
High Resolution Local Wave Energy Modelling for the Iberian Peninsula
,”
Energy
,
91
, pp.
1099
1112
.
29.
Silva
,
D.
,
Bento
,
A. R.
,
Martinho
,
P.
, and
Guedes Soares
,
C.
,
2016
, “
Corrigendum to “High Resolution Local Wave Energy Modelling in the Iberian Peninsula” [Energy 91 (2015) 1099-1112]
,”
Energy
,
94
, pp.
857
858
.
You do not currently have access to this content.