Abstract
Tank sloshing in a liquid cargo ship will cause instability or even overturning of its carrier if the external wave frequency is close to the natural frequency of the tank. The inherent damping of a tank without inner structures has been found to be insufficient for suppressing violent sloshing motion. A variety of damping plates have been designed to increase the inherent damping of the tank. Of them, a horizontal perforated plate (HPP) has been proved to be effective for dissipating energy in a swaying tank through experiments. In this study, the sloshing problem in a tank with an HPP under swaying and rolling excitation is analytically studied based on the potential theory. The quadratic pressure loss boundary at the perforated plate is adopted, and the matched eigenfunction expansion method (MEEM) with iterative calculations is used to develop the analytical model. Based on the different porosities and submerged depths of the plate, both the free surface elevations and the hydrodynamic coefficients are carefully examined. The results give a better understanding in the effect of the inner HPP on the sloshing motion in the ship tank.